cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244649 Decimal expansion of the sum of the reciprocals of the Dodecagonal numbers (A051624).

This page as a plain text file.
%I A244649 #19 Feb 08 2023 23:03:54
%S A244649 1,1,7,7,9,5,6,0,5,7,9,2,2,6,6,3,8,5,8,7,3,5,1,7,3,9,6,8,0,9,1,8,8,7,
%T A244649 4,1,8,4,4,5,8,5,7,2,3,4,5,6,6,6,7,9,8,0,2,8,4,2,5,2,2,8,5,7,3,2,6,6,
%U A244649 8,9,2,5,6,8,2,8,4,8,8,7,4,5,4,0,2,4,0,7,6,9,0,2,5,6,9,5,5,9,0,3,2,2,4,4,4
%N A244649 Decimal expansion of the sum of the reciprocals of the Dodecagonal numbers (A051624).
%C A244649 From _Wolfdieter Lang_, Nov 09 2017: (Start)
%C A244649 In the Downey et al. link this is the instance k = 5 of the formula given there for S_{2*k+2}. A simpler formula is given in the Koecher reference as (5/4)*v_5(1) on p. 192. See the Kotesovec formula given below.
%C A244649 The partial sums are given in A294520/A294521. (End)
%D A244649 Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193.
%H A244649 Lawrence Downey, Boon W. Ong, and James A. Sellers, <a href="https://www.d.umn.edu/~jsellers/downey_ong_sellers_cmj_preprint.pdf">Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers</a>, Coll. Math. J., 39, no. 5 (2008), 391-394.
%H A244649 Wikipedia, <a href="http://en.wikipedia.org/wiki/Polygonal_number">Polygonal number</a>
%F A244649 Equals Sum_{n>=1} 1/(5n^2 - 4n).
%F A244649 Equals Pi/8*sqrt(1+2/sqrt(5)) + (5*log(5) + sqrt(5)*log((3+sqrt(5))/2))/16. - _Vaclav Kotesovec_, Jul 04 2014
%F A244649 This is the value given in  the Koecher reference (see a comment above), and rewritten with the golden section phi = (1 + sqrt(5))/2 this becomes
%F A244649   ((5/2)*log(5) + (2*phi - 1)*(log(phi) + (Pi/5)*sqrt(3 + 4*phi)))/8. - _Wolfdieter Lang_, Nov 09 2017
%e A244649 1.1779560579226638587351739680918874184458572345666798028425228573...
%t A244649 RealDigits[ Sum[1/(5n^2 - 4n), {n, 1 , Infinity}], 10, 111][[1]]
%Y A244649 Cf. A000038, A013661, A051624, A244639, A244644, A244645, A244646, A244647, A244648, A294520/A294521.
%K A244649 nonn,cons,easy
%O A244649 1,3
%A A244649 _Robert G. Wilson v_, Jul 03 2014