This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244656 #14 Mar 13 2018 04:08:23 %S A244656 2,2,6,12,60,60,420,840,2520,2520,55440,55440,360360,360360,360360, %T A244656 2162160,85765680,85765680,33522128640,33522128640,33522128640, %U A244656 33522128640,19275223968000,19275223968000,19275223968000 %N A244656 Least product of consecutive positive integers which is divisible by each of 1, 2, ..., n. %C A244656 For n > 1, clearly a(n) is bounded below by lcm(1,2,...,n) and bounded above by n!. Further, a(n) is a positive multiple of lcm(1,2,...,n). Any product of two or more consecutive positive integers may be expressed as m!/k!, where 0 <= k <= m-2. For this sequence, the m corresponding to a(n) may or may not be a multiple of n. Whenever a(n) can be expressed as the product of exactly two consecutive integers, it is a term of A002378. See the a-file link for further comments. %H A244656 Rick L. Shepherd, <a href="/A244656/b244656.txt">Table of n, a(n) for n = 1..36</a> %H A244656 Rick L. Shepherd, <a href="/A244656/a244656.txt">Sample program output and calculation notes</a> %e A244656 a(7) = 20*21 = 21!/19! = 420 because 420 is divisible by 1, 2, 3, 4, 5, 6, and 7, and no positive integer less than 420 is divisible by each of these. Here, 420 = lcm(1,2,3,4,5,6,7). 420 is an oblong (or promic) number (A002378). %e A244656 a(11) = 7*8*9*10*11 = 11!/6! = 55440. Here, 27720 = lcm(1,2,3,4,5,6,7,8,9,10,11), but 27720 cannot be represented as a product of consecutive positive integers. %e A244656 a(31) = 6081487775*6081487776 = 36984493563555938400, also a promic number. %o A244656 (PARI) %o A244656 {a(n) = %o A244656 local(L, M, i, k = 0, s = 0, ret = 0, d, divs2, %o A244656 st, pr, prt = 1); /* Use prt = 0 to suppress printing. */ %o A244656 if(n < 1, return, if(n < 3, ret = 2, %o A244656 L = lcm(vector(n, i, i)); %o A244656 M = n!/L; %o A244656 while(k < M, %o A244656 k++; %o A244656 s += L; d = divisors(s); divs2 = #d \ 2; %o A244656 st = 2; pr = d[st]; %o A244656 i = 0; %o A244656 while(st + i <= divs2, %o A244656 if(d[st + i + 1] == d[st + i] + 1, %o A244656 pr *= d[st + i + 1]; i++; %o A244656 if(pr == s, %o A244656 if(prt, %o A244656 print1("k*L = ", k, "*", L, " = ", %o A244656 s, " = ", d[st], "*"); %o A244656 if(d[st + i] > d[st] + 2, print1("...*"), %o A244656 if(d[st + i] == d[st] + 2, %o A244656 print1(d[st] + 1, "*"))); %o A244656 print(d[st + i], " = ", d[st + i], "!/", %o A244656 d[st] - 1, "!")); %o A244656 ret = s; break(2), %o A244656 if(pr > s, st++; pr = d[st]; i = 0)), %o A244656 if(pr < s, st += i + 1, st++); pr = d[st]; i = 0))))); %o A244656 return(ret)} %Y A244656 Cf. A003418, A000142, A025527, A002378. %K A244656 nonn %O A244656 1,1 %A A244656 _Rick L. Shepherd_, Jul 03 2014, Sep 14 2014