cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244656 Least product of consecutive positive integers which is divisible by each of 1, 2, ..., n.

This page as a plain text file.
%I A244656 #14 Mar 13 2018 04:08:23
%S A244656 2,2,6,12,60,60,420,840,2520,2520,55440,55440,360360,360360,360360,
%T A244656 2162160,85765680,85765680,33522128640,33522128640,33522128640,
%U A244656 33522128640,19275223968000,19275223968000,19275223968000
%N A244656 Least product of consecutive positive integers which is divisible by each of 1, 2, ..., n.
%C A244656 For n > 1, clearly a(n) is bounded below by lcm(1,2,...,n) and bounded above by n!. Further, a(n) is a positive multiple of lcm(1,2,...,n). Any product of two or more consecutive positive integers may be expressed as m!/k!, where 0 <= k <= m-2. For this sequence, the m corresponding to a(n) may or may not be a multiple of n. Whenever a(n) can be expressed as the product of exactly two consecutive integers, it is a term of A002378. See the a-file link for further comments.
%H A244656 Rick L. Shepherd, <a href="/A244656/b244656.txt">Table of n, a(n) for n = 1..36</a>
%H A244656 Rick L. Shepherd, <a href="/A244656/a244656.txt">Sample program output and calculation notes</a>
%e A244656 a(7) = 20*21 = 21!/19! = 420 because 420 is divisible by 1, 2, 3, 4, 5, 6, and 7, and no positive integer less than 420 is divisible by each of these. Here, 420 = lcm(1,2,3,4,5,6,7). 420 is an oblong (or promic) number (A002378).
%e A244656 a(11) = 7*8*9*10*11 = 11!/6! = 55440. Here, 27720 = lcm(1,2,3,4,5,6,7,8,9,10,11), but 27720 cannot be represented as a product of consecutive positive integers.
%e A244656 a(31) = 6081487775*6081487776 = 36984493563555938400, also a promic number.
%o A244656 (PARI)
%o A244656 {a(n) =
%o A244656 local(L, M, i, k = 0, s = 0, ret = 0, d, divs2,
%o A244656    st, pr, prt = 1); /* Use prt = 0 to suppress printing. */
%o A244656 if(n < 1, return, if(n < 3, ret = 2,
%o A244656 L = lcm(vector(n, i, i));
%o A244656 M = n!/L;
%o A244656 while(k < M,
%o A244656    k++;
%o A244656    s += L; d = divisors(s); divs2 = #d \ 2;
%o A244656    st = 2; pr = d[st];
%o A244656    i = 0;
%o A244656    while(st + i <= divs2,
%o A244656       if(d[st + i + 1] == d[st + i] + 1,
%o A244656          pr *= d[st + i + 1]; i++;
%o A244656          if(pr == s,
%o A244656             if(prt,
%o A244656                print1("k*L = ", k, "*", L, " = ",
%o A244656                  s, " = ", d[st], "*");
%o A244656                if(d[st + i] > d[st] + 2, print1("...*"),
%o A244656                  if(d[st + i] == d[st] + 2,
%o A244656                    print1(d[st] + 1, "*")));
%o A244656                print(d[st + i], " = ", d[st + i], "!/",
%o A244656                  d[st] - 1, "!"));
%o A244656             ret = s; break(2),
%o A244656             if(pr > s, st++; pr = d[st]; i = 0)),
%o A244656          if(pr < s, st += i + 1, st++); pr = d[st]; i = 0)))));
%o A244656 return(ret)}
%Y A244656 Cf. A003418, A000142, A025527, A002378.
%K A244656 nonn
%O A244656 1,1
%A A244656 _Rick L. Shepherd_, Jul 03 2014, Sep 14 2014