A244662 Decimal expansion of 'C' (as designated by D. Shanks), a constant appearing in the second order term of the asymptotic expansion of the number of non-hypotenuse numbers not exceeding a given bound.
7, 0, 4, 7, 5, 3, 4, 5, 1, 7, 0, 5, 9, 4, 7, 8, 8, 4, 1, 2, 2, 5, 5, 8, 1, 9, 7, 5, 9, 1, 8, 9, 8, 8, 1, 8, 5, 2, 1, 5, 9, 9, 7, 6, 4, 5, 4, 9, 2, 3, 5, 8, 3, 1, 6, 1, 7, 4, 4, 5, 4, 8, 8, 3, 4, 1, 3, 6, 2, 8, 4, 6, 3, 9, 0, 3, 1, 8, 8, 4, 4, 4, 6, 0, 6, 3, 6, 4, 9, 2, 5, 3, 5, 2, 2, 3, 0, 2, 6, 4
Offset: 0
Examples
0.70475345170594788412255819759189881852...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, 2.3 Landau-Ramanujan Constant, p. 101.
Links
- Daniel Shanks, The second-order term in the asymptotic expansion of B(x), Mathematics of Computation, Vol. 18 (1964), pp. 75-86.
- Daniel Shanks, Non-hypotenuse Numbers, Fib. Quart., 13:4 (1975), pp. 319-321.
- Eric Weisstein's MathWorld, Lemniscate Constant
Programs
-
Mathematica
digits = 100; m0 = 5; dm = 5; beta[x_] := 1/4^x*(Zeta[x, 1/4] - Zeta[x, 3/4]); L = Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2; Clear[f]; f[m_] := f[m] = 1/2*(1 - Log[Pi*E^EulerGamma/(2*L)]) - 1/4*NSum[Zeta'[2^k]/Zeta[2^k] - beta'[2^k]/beta[2^k] + Log[2]/(2^(2^k) - 1), {k, 1, m}, WorkingPrecision -> digits + 10]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits] != RealDigits[f[m - dm], 10, digits], m = m + dm]; c = A227158 = f[m]; c + 1/2 Log[(Pi/L)^2*Exp[EulerGamma]/2] // RealDigits[#, 10, digits] & // First