cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244674 Decimal expansion of sum_(n>=1) (H(n)^3/(n+1)^3) where H(n) is the n-th harmonic number.

This page as a plain text file.
%I A244674 #13 Sep 08 2022 08:46:08
%S A244674 7,9,1,6,1,1,5,3,1,5,2,4,3,4,2,1,1,7,1,6,6,1,7,6,9,2,7,4,2,0,2,0,2,0,
%T A244674 6,5,5,6,9,9,7,2,2,3,8,3,3,5,0,1,6,8,7,6,9,6,2,9,0,0,4,5,4,2,8,8,2,3,
%U A244674 2,5,8,5,0,2,7,4,2,0,0,3,9,5,4,9,1,6,4,8,6,7,5,3,8,8,0,6,1,7,2,1,0,1
%N A244674 Decimal expansion of sum_(n>=1) (H(n)^3/(n+1)^3) where H(n) is the n-th harmonic number.
%H A244674 Vincenzo Librandi, <a href="/A244674/b244674.txt">Table of n, a(n) for n = 0..1000</a>
%H A244674 Philippe Flajolet, Bruno Salvy, <a href="http://algo.inria.fr/flajolet/Publications/FlSa98.pdf">Euler Sums and Contour Integral Representations</a>, Experimental Mathematics 7:1 (1998) page 27.
%F A244674 Equals 2*zeta(3)^2 - 11/5040*Pi^6.
%e A244674 0.79161153152434211716617692742020206556997223833501687696290045428823...
%t A244674 RealDigits[2*Zeta[3]^2 - 33/16*Zeta[6], 10, 102] // First
%o A244674 (PARI)  default(realprecision, 100);  2*zeta(3)^2 - 11/5040*Pi^6 \\ _G. C. Greubel_, Aug 31 2018
%o A244674 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); L:=RiemannZeta(); 2*Evaluate(L,3)^2 - 11/5040*Pi(R)^6; // _G. C. Greubel_, Aug 31 2018
%Y A244674 Cf. A001008, A002805, A002117.
%K A244674 nonn,cons,easy
%O A244674 0,1
%A A244674 _Jean-François Alcover_, Jul 04 2014