cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244677 The spiral of Champernowne, read along the East ray.

Original entry on oeis.org

1, 2, 0, 1, 1, 4, 8, 9, 1, 1, 6, 8, 2, 4, 8, 3, 6, 0, 4, 9, 5, 6, 6, 1, 7, 4, 1, 9, 0, 1, 1, 1, 7, 1, 4, 7, 6, 1, 6, 6, 7, 1, 0, 9, 0, 2, 3, 5, 5, 2, 7, 4, 2, 3, 1, 6, 1, 3, 5, 1, 2, 3, 0, 9, 5, 4, 5, 1, 0, 4, 1, 6, 7, 5, 6, 4, 6, 6, 3, 5, 7, 6, 9, 0, 0, 7, 6, 8, 5, 8, 3, 9, 2, 8, 0, 3, 1, 9, 8, 0, 0, 3, 0, 4, 1
Offset: 1

Views

Author

Robert G. Wilson v, Jul 04 2014

Keywords

Comments

Inspired by Stanislaw Ulam's spiral, circa 1963.

Examples

			The beginning of the infinite spiral of David Gawen Champernowne:
.
  7--1--9--6--1--8--6--1--7--6--1--6--6--1--5--6--1--4--6--1--3  .
  |                                                           |  |
  0  1--4--4--1--3--4--1--2--4--1--1--4--1--0--4--1--9--3--1  6  .
  |  |                                                     |  |  |
  1  4  2--1--1--2--1--0--2--1--9--1--1--8--1--1--7--1--1  8  1  .
  |  |  |                                               |  |  |  |
  7  5  2  0--1--1--0--1--0--0--1--9--9--8--9--7--9--6  6  3  2  9
  |  |  |  |                                         |  |  |  |  |
  1  1  1  2  7--7--6--7--5--7--4--7--3--7--2--7--1  9  1  1  6  8
  |  |  |  |  |                                   |  |  |  |  |  |
  1  4  2  1  7  5--5--4--5--3--5--2--5--1--5--0  7  5  1  7  1  1
  |  |  |  |  |  |                             |  |  |  |  |  |  |
  7  6  3  0  8  5  7--3--6--3--5--3--4--3--3  5  0  9  5  3  1  8
  |  |  |  |  |  |  |                       |  |  |  |  |  |  |  |
  2  1  1  3  7  6  3  3--2--2--2--1--2--0  3  9  7  4  1  1  6  8
  |  |  |  |  |  |  |  |                 |  |  |  |  |  |  |  |  |
  1  4  2  1  9  5  8  2  3--1--2--1--1  2  2  4  9  9  1  6  1  1
  |  |  |  |  |  |  |  |  |           |  |  |  |  |  |  |  |  |  |
  7  7  4  0  8  7  3  4  1  5--4--3  1  9  3  8  6  3  4  3  0  7
  |  |  |  |  |  |  |  |  |  |     |  |  |  |  |  |  |  |  |  |  |
  3  1  1  4  0  5  9  2  4  6  1--2  0  1  1  4  8  9  1  1  6  8
  |  |  |  |  |  |  |  |  |  |        |  |  |  |  |  |  |  |  |  |
  1  4  2  1  8  8  4  5  1  7--8--9--1  8  3  7  6  2  1  5  1  1
  |  |  |  |  |  |  |  |  |              |  |  |  |  |  |  |  |  |
  7  8  5  0  1  5  0  2  5--1--6--1--7--1  0  4  7  9  3  3  9  6
  |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |
  4  1  1  5  8  9  4  6--2--7--2--8--2--9--3  6  6  1  1  1  5  8
  |  |  |  |  |  |  |                          |  |  |  |  |  |  |
  1  4  2  1  2  6  1--4--2--4--3--4--4--4--5--4  6  9  1  4  1  1
  |  |  |  |  |  |                                |  |  |  |  |  |
  7  9  6  0  8  0--6--1--6--2--6--3--6--4--6--5--6  0  2  3  8  5
  |  |  |  |  |                                      |  |  |  |  |
  5  1  1  6  3--8--4--8--5--8--6--8--7--8--8--8--9--9  1  1  5  8
  |  |  |  |                                            |  |  |  |
  1  5  2  1--0--7--1--0--8--1--0--9--1--1--0--1--1--1--1  3  1  1
  |  |  |                                                  |  |  |
  7  0  7--1--2--8--1--2--9--1--3--0--1--3--1--1--3--2--1--3  7  4
  |  |                                                        |  |
  6  1--5--1--1--5--2--1--5--3--1--5--4--1--5--5--1--5--6--1--5  8
  |                                                              |
  1--7--7--1--7--8--1--7--9--1--8--0--1--8--1--1--8--2--1--8--3--1
		

Crossrefs

Programs

  • Mathematica
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; f[n_] := 4n^2 - 11n + 8 (* see formula section *); Array[ almostNatural[ f@#, 10] &, 105]

Formula

Formulas for rays in directions of 32 compass points:
SE 4n^2 -4n +1
SExS 64n^2 -113n +50
SSE 16n^2 -25n +10
SxE 64n^2 -115n +52
S 4n^2 -5n +2
SxW 64n^2 -117n +54
SSW 16n^2 -27n +12
SWxS 64n^2 -119n +56
SW 4n^2 -6n +3
SWxW 64n^2 -121n +58
WSW 16n^2 -29n +14
WxS 64n^2 -123n +60
W 4n^2 -7n +4
WxN 64n^2 -125n +62
WNW 16n^2 -31n +16
NWxW 64n^2 -127n +64
NW 4n^2 -8n +5
NWxN 64n^2 -129n +66
NNW 16n^2 -33n +18
NxW 64n^2 -131n +68
N 4n^2 -9n +6
NxE 64n^2 -133n +70
NNE 16n^2 -35n +20
NExN 64n^2 -135n +72
NE 4n^2 -10n +7
NExE 64n^2 -137n +74
ENE 16n^2 -37n +22
ExN 64n^2 -139n +76
E 4n^2 -11n +8
ExS 64n^2 -141n +78
ESE 16n^2 -39n +24
SExE 64n^2 -143n +80