This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244708 #5 Jul 08 2014 09:14:15 %S A244708 1,1,3,6,15,31,74,159,363,799,1800,3988,8945,19893,44486,99153,221520, %T A244708 494187,1103789,2463834,5502927,12288076,27448039,61308387,136966368, %U A244708 305999360,683733350,1527844853,3414432569,7631131801,17056871547,38127833992,85235556468 %N A244708 Number of n-node unlabeled rooted trees with thinning limbs and root outdegree (branching factor) 7. %C A244708 In a rooted tree with thinning limbs the outdegree of a parent node is larger than or equal to the outdegree of any of its child nodes. %H A244708 Alois P. Heinz, <a href="/A244708/b244708.txt">Table of n, a(n) for n = 8..500</a> %p A244708 b:= proc(n, i, h, v) option remember; `if`(n=0, %p A244708 `if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0, %p A244708 `if`(n=v, 1, add(binomial(A(i, min(i-1, h))+j-1, j) %p A244708 *b(n-i*j, i-1, h, v-j), j=0..min(n/i, v))))) %p A244708 end: %p A244708 A:= proc(n, k) option remember; %p A244708 `if`(n<2, n, add(b(n-1$2, j$2), j=1..min(k,n-1))) %p A244708 end: %p A244708 a:= n-> b(n-1$2, 7$2): %p A244708 seq(a(n), n=8..50); %Y A244708 Column k=7 of A244657. %K A244708 nonn %O A244708 8,3 %A A244708 _Alois P. Heinz_, Jul 04 2014