This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244709 #5 Jul 08 2014 09:16:25 %S A244709 1,1,3,6,15,31,74,159,365,803,1813,4022,9038,20128,45093,100656, %T A244709 225263,503320,1126045,2517487,5631913,12596046,28181168,63045684, %U A244709 141071758,315668674,706452161,1581088178,3538954508,7921759060,17733983146,39702719910,88893039358 %N A244709 Number of n-node unlabeled rooted trees with thinning limbs and root outdegree (branching factor) 8. %C A244709 In a rooted tree with thinning limbs the outdegree of a parent node is larger than or equal to the outdegree of any of its child nodes. %H A244709 Alois P. Heinz, <a href="/A244709/b244709.txt">Table of n, a(n) for n = 9..500</a> %p A244709 b:= proc(n, i, h, v) option remember; `if`(n=0, %p A244709 `if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0, %p A244709 `if`(n=v, 1, add(binomial(A(i, min(i-1, h))+j-1, j) %p A244709 *b(n-i*j, i-1, h, v-j), j=0..min(n/i, v))))) %p A244709 end: %p A244709 A:= proc(n, k) option remember; %p A244709 `if`(n<2, n, add(b(n-1$2, j$2), j=1..min(k,n-1))) %p A244709 end: %p A244709 a:= n-> b(n-1$2, 8$2): %p A244709 seq(a(n), n=9..50); %Y A244709 Column k=8 of A244657. %K A244709 nonn %O A244709 9,3 %A A244709 _Alois P. Heinz_, Jul 04 2014