This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244711 #4 Jul 08 2014 09:21:24 %S A244711 1,1,3,6,15,31,74,159,365,805,1819,4039,9085,20255,45421,101498, %T A244711 227374,508571,1138954,2548992,5708220,12779899,28621759,64097135, %U A244711 143571116,321590093,720437987,1614033142,3616368570,8103267171,18158695095,40694685268,91205979165 %N A244711 Number of n-node unlabeled rooted trees with thinning limbs and root outdegree (branching factor) 10. %C A244711 In a rooted tree with thinning limbs the outdegree of a parent node is larger than or equal to the outdegree of any of its child nodes. %H A244711 Alois P. Heinz, <a href="/A244711/b244711.txt">Table of n, a(n) for n = 11..400</a> %p A244711 b:= proc(n, i, h, v) option remember; `if`(n=0, %p A244711 `if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0, %p A244711 `if`(n=v, 1, add(binomial(A(i, min(i-1, h))+j-1, j) %p A244711 *b(n-i*j, i-1, h, v-j), j=0..min(n/i, v))))) %p A244711 end: %p A244711 A:= proc(n, k) option remember; %p A244711 `if`(n<2, n, add(b(n-1$2, j$2), j=1..min(k,n-1))) %p A244711 end: %p A244711 a:= n-> b(n-1$2, 10$2): %p A244711 seq(a(n), n=11..50); %Y A244711 Column k=10 of A244657. %K A244711 nonn %O A244711 11,3 %A A244711 _Alois P. Heinz_, Jul 04 2014