cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244724 Lexicographically earliest permutation of the natural numbers such that primes and composites alternate in the sums of adjacent terms.

This page as a plain text file.
%I A244724 #9 Aug 05 2019 17:46:40
%S A244724 1,2,4,3,5,6,8,9,7,10,11,12,13,16,14,15,17,20,18,19,21,22,23,24,25,28,
%T A244724 26,27,29,30,32,35,31,36,33,34,38,41,37,42,39,40,44,45,43,46,47,50,48,
%U A244724 49,51,52,53,54,56,57,55,58,59,68,60,67,61,66,62,65,63
%N A244724 Lexicographically earliest permutation of the natural numbers such that primes and composites alternate in the sums of adjacent terms.
%C A244724 For k > 0: a(2*k-1) + a(2*k) is prime, a(2*k) + a(2*k+1) is composite.
%H A244724 Reinhard Zumkeller, <a href="/A244724/b244724.txt">Table of n, a(n) for n = 1..10000</a>
%H A244724 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A244724 A010051(a(n)+a(n+1)) = n mod 2.
%e A244724 .             n | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
%e A244724 .          a(n) | 1 2 4 3 5 6 8 9 7 10 11 12 13 16 14 15 17 20 18 19
%e A244724 . A026233(a(n)) | 1 1 2 2 3 3 4 5 4  6  5  7  6 10  8  9  7 12 11  8 .
%o A244724 (Haskell)
%o A244724 import Data.List (delete)
%o A244724 a244724 n = a244724_list !! (n-1)
%o A244724 a244724_list = 1 : f 1 [2..] where
%o A244724    f x xs = f' xs where
%o A244724      f' (u:us) | a010051' (x + u) == 1 = g u (delete u xs)
%o A244724                | otherwise             = f' us where
%o A244724         g y ys = g' ys where
%o A244724           g' (v:vs) | a010051' (y + v) == 0 = u : v : f v (delete v ys)
%o A244724                     | otherwise        = g' vs
%Y A244724 Cf. A244732 (inverse), A244731 (fixed points), A073846, A113321, A115316.
%K A244724 nonn
%O A244724 1,2
%A A244724 _Reinhard Zumkeller_, Jul 05 2014