This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244734 #18 Jul 30 2014 05:39:41 %S A244734 1,2,3,4,5,2,7,4,3,5,11,6,13,7,3,16,17,6,19,4,7,22,23,8,25,26,9,4,29, %T A244734 15,31,8,33,17,5,9,37,19,13,10,41,7,43,11,5,46,47,16,49,10,17,52,53,6, %U A244734 11,56,57,58,59,12,61,62,63,64,13,6,67,34,23,35,71,12,73,37,25,38,7,13 %N A244734 Numerators of the triangle T(n,k) = (n*(n+1)/2 + k + 1)/(k+1) for n >= k >= 0. %C A244734 The rational triangle T(n,k) begins: %C A244734 n\k 0 1 2 3 4 5 6 7 8 9 ... %C A244734 0: 1 %C A244734 1: 2 3/2 %C A244734 2: 4 5/2 2 %C A244734 3: 7 4 3 5/2 %C A244734 4: 11 6 13/3 7/2 3 %C A244734 5: 16 17/2 6 19/4 4 7/2 %C A244734 6: 22 23/2 8 25/4 26/5 9/2 4 %C A244734 7: 29 15 31/3 8 33/5 17/3 5 9/2 %C A244734 8: 37 19 13 10 41/5 7 43/7 11/2 5 %C A244734 9: 46 47/2 16 49/4 10 17/2 52/7 53/8 6 11/2 %C A244734 ... reformatted and formula corrected. - _Wolfdieter Lang_, Jul 28 2014 %F A244734 a(n,k) = numerator((n*(n+1)/2+k+1)/(k+1)), n >= k >= 0. -_Wolfdieter Lang_, Jul 28 2014 %e A244734 The triangle a(n,k) begins: %e A244734 n\k 0 1 2 3 4 5 6 7 8 9 ... %e A244734 0: 1 %e A244734 1: 2 3 %e A244734 2: 4 5 2 %e A244734 3: 7 4 3 5 %e A244734 4: 11 6 13 7 3 %e A244734 5: 16 17 6 19 4 7 %e A244734 6: 22 23 8 25 26 9 4 %e A244734 7: 29 15 31 8 33 17 5 9 %e A244734 8: 37 19 13 10 41 7 43 11 5 %e A244734 9: 46 47 16 49 10 17 52 53 6 11 %e A244734 ... reformatted - _Wolfdieter Lang_, Jul 28 2014 %e A244734 First column: A000124. Main diagonal: A145051 from A026741. %e A244734 Alternate main and second diagonal: in A173234. %t A244734 Table[(n*(n+1)/2+k+1)/(k+1) // Numerator, {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 08 2014 *) %Y A244734 Cf. A244840 (denominators). %K A244734 nonn,tabl,easy %O A244734 0,2 %A A244734 _Paul Curtz_, Jul 05 2014 %E A244734 Edited: (wrong) name changed. Offset changed to 0 in order to fit with the denominators A244840 and the Mathematica program. Cf. A244840 added. - _Wolfdieter Lang_, Jul 28 2014