cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244739 Numbers k such that (prime(k) mod 5) == 0 (mod 3).

This page as a plain text file.
%I A244739 #24 Jul 07 2024 19:12:45
%S A244739 2,3,6,9,14,16,21,23,27,30,38,40,44,48,51,56,61,62,65,71,74,76,84,86,
%T A244739 90,96,99,103,108,112,117,119,122,124,130,132,137,143,147,150,153,162,
%U A244739 166,170,174,179,183,185,188,191,192,196,198,200,208,213,220,224
%N A244739 Numbers k such that (prime(k) mod 5) == 0 (mod 3).
%C A244739 Every positive integer is in exactly one of the sequences A244739, A024707, A244741.
%H A244739 Clark Kimberling, <a href="/A244739/b244739.txt">Table of n, a(n) for n = 1..1000</a>
%e A244739 n ... prime(n) mod 5 mod 3
%e A244739 1 ..... 2 ..... 2 ... 2
%e A244739 2 ..... 3 ..... 3 ... 0
%e A244739 3 ..... 5 ..... 0 ... 0
%e A244739 4 ..... 7 ..... 2 ... 2
%e A244739 5 ..... 11 .... 1 ... 1
%e A244739 6 ..... 13 .... 3 ... 0
%t A244739 z = 300; u = Mod[Table[Mod[Prime[n], 5], {n, 1, z}], 3] (* A244738 *)
%t A244739 v1 = Flatten[Position[u, 0]]  (* A244739 *)
%t A244739 v2 = Flatten[Position[u, 1]]  (* A024707 *)
%t A244739 v3 = Flatten[Position[u, 2]]  (* A244741 *)
%Y A244739 Cf. A039703, A244738, A024707, A244741, A244735. Essentially the same as A049508.
%K A244739 nonn,easy
%O A244739 1,1
%A A244739 _Clark Kimberling_, Jul 05 2014