This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244740 #9 Apr 28 2016 12:40:41 %S A244740 1,2,1,3,1,1,3,2,2,1,1,5,1,2,1,1,1,4,3,2,1,2,1,1,1,5,1,3,2,2,1,1,1,1, %T A244740 3,3,4,1,3,1,2,1,1,1,1,5,3,2,2,4,1,2,1,2,1,1,1,1,1,7,1,4,2,2,1,3,1,2, %U A244740 1,1,1,1,1,1,8,3,2,2,3,1,3,1,2,1,2,1 %N A244740 Irregular triangular array read by rows: T(n,k) = number of positive integers m such that (prime(n) mod m) = k, for k=1..(-1 + prime(k))/2. %C A244740 (sum of numbers in row n) = prime(n+1)-2; (column 1) = A244796; (column 2) = A244797; (column 3) = A244798. %H A244740 Clark Kimberling, <a href="/A244740/b244740.txt">Table of n, a(n) for n = 1..500</a> %e A244740 First 12 rows: %e A244740 1 %e A244740 2 1 %e A244740 3 1 1 %e A244740 3 2 2 1 1 %e A244740 5 1 2 1 1 1 %e A244740 4 3 2 1 2 1 1 1 %e A244740 5 1 3 2 2 1 1 1 1 %e A244740 3 3 4 1 3 1 2 1 1 1 %e A244740 5 3 2 2 4 1 2 1 2 1 1 1 1 1 %e A244740 7 1 4 2 2 1 3 1 2 1 1 1 1 1 1 %e A244740 8 3 2 2 3 1 3 1 2 1 2 1 1 1 1 1 1 1 %e A244740 7 3 2 1 5 2 2 2 2 1 2 1 2 1 1 1 1 1 1 1 %e A244740 For row 4, count these congruences: %e A244740 11 = (1 mod m) for m = 2, 5, 10; %e A244740 11 = (2 mod m) for m = 3, 9; %e A244740 11 = (3 mod m) for m = 4, 8; %e A244740 11 = (4 mod m) for m = 7; %e A244740 11 = (5 mod m) for m = 6, so that (row 4) = (3,2,2,1,1). %t A244740 z = 60; f[n_, m_, k_] := f[n, m, k] = If[Mod[Prime[n], m] == k, 1, 0]; %t A244740 t[k_] := t[k] = Table[f[n, m, k], {n, 1, z}, {m, 1, -1 + Prime[n]}]; %t A244740 u = Table[Count[t[k][[i]], 1], {k, 1, 40}, {i, 1, z}]; %t A244740 v = Table[u[[n, k]], {k, 2, 20}, {n, 1, (-1 + Prime[k])/2}] %t A244740 Flatten[v] (* A244740 *) %Y A244740 Cf. A000040, A244796, A244797, A244798, A244799, A244800. %K A244740 nonn,easy,tabf %O A244740 1,2 %A A244740 _Clark Kimberling_, Jul 06 2014