This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244750 #21 Dec 21 2024 02:00:41 %S A244750 0,2,3,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536, %T A244750 131072,262144 %N A244750 0-additive sequence: a(n) is the smallest number larger than a(n-1) which is not the sum of any subset of earlier terms, with initial values {0, 2, 3, 4}. %D A244750 R. K. Guy, "s-Additive sequences," preprint, 1994. %H A244750 Steven R. Finch, <a href="http://www.jstor.org/stable/2325001">Are 0-additive sequences always regular?</a>, Amer. Math. Monthly, 99 (1992), 671-673. %e A244750 a(5) cannot be 5=2+3. It cannot be 6=2+4. It cannot be 7=3+4, and becomes a(5)=8. %e A244750 a(6) cannot be 9=2+3+4. It cannot be 10=2+8. It cannot be 11=3+8. It cannot be 12 = 4+8. It cannot be 13=2+3+8. It cannot be 14=2+4+8. It cannot be 15=3+4+8, and becomes a(6)=16. %p A244750 A244750:= proc(n) %p A244750 option remember; %p A244750 if n <= 4 then %p A244750 op(n,[0,2,3,4]); %p A244750 else %p A244750 prev := {seq(procname(k),k=1..n-1)} ; %p A244750 for a from procname(n-1)+1 do %p A244750 awrks := true ; %p A244750 for asub in combinat[choose](prev) do %p A244750 if add(p,p=asub) = a then %p A244750 awrks := false; %p A244750 break; %p A244750 end if; %p A244750 end do: %p A244750 if awrks then %p A244750 return a; %p A244750 end if; %p A244750 end do: %p A244750 end if; %p A244750 end proc: %p A244750 for n from 1 do %p A244750 print(A244750(n)) ; %p A244750 end do: # _R. J. Mathar_, Jul 12 2014 %t A244750 f[s_List] := f[n] = Block[{k = s[[-1]] + 1, ss = Union[Plus @@@ Subsets[s]]}, While[ MemberQ[ss, k], k++]; Append[s, k]]; Nest[ f[#] &, {0, 2, 3, 4}, 16] %Y A244750 Cf. A003662, A003663, A005408, A026471, A026474, A033627, A051039, A051040, A244151, A244749. %Y A244750 Cf. A060469, A060470, A060471, A060472. %K A244750 nonn,more %O A244750 1,2 %A A244750 _N. J. A. Sloane_ and _Robert G. Wilson v_, Jul 05 2014 %E A244750 Corrected by _R. J. Mathar_, Jul 12 2014