This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244752 #32 Oct 28 2021 06:29:39 %S A244752 17,33,37,49,73,65,65,109,129,80,81,145,193,82,101,97,181,257,161,201, %T A244752 145,113,217,321,163,301,289,197,129,253,385,242,401,433,393,26,145, %U A244752 289,449,244,501,577,589,199,257,161,325,513,323,601,721,785,224,513 %N A244752 Square array read by antidiagonals in which rows are indexed by composite numbers w and row w gives n such that n^(w-1) == 1 (mod w^2). %C A244752 We can say that "w is a Wieferich pseudoprime to base n". %C A244752 Any prime factor of w is a Wieferich prime to base n. %H A244752 Robert Price, <a href="/A244752/b244752.txt">Table of n, a(n) for n = 2..1276</a> %e A244752 Table starts %e A244752 w=4: 17, 33, 49, 65, 81, 97, 113, .... %e A244752 w=6: 37, 73, 109, 145, 181, 217, .... %e A244752 w=8: 65, 129, 193, 257, 321, 385, .... %e A244752 w=9: 80, 82, 161, 163, 242, 244, .... %e A244752 w=10: 101, 201, 301, 401, 501, 601, .... %e A244752 w=12: 145, 289, 433, 577, 721, 865, .... %e A244752 w=14: 197, 393, 589, 785, 981, .... %e A244752 .... %t A244752 T = {}; %t A244752 For[w = 4, w <= 100, w++, %t A244752 If[PrimeQ[w], Continue[]]; %t A244752 t = {}; %t A244752 For [n = 2, n <= 10^5, n++, %t A244752 If[Mod[n^(w - 1), w^2] == 1, AppendTo[t, n]]]; %t A244752 AppendTo[T, t]]; %t A244752 Print[TableForm[T]]; %t A244752 A244752 = {}; %t A244752 For[c = 1, c <= 50, c++, %t A244752 For[r = 1, r <= c, r++, AppendTo[A244752, T[[r]][[c - r + 1]]]]]; %t A244752 A244752 (* _Robert Price_, Sep 07 2019 *) %o A244752 (PARI) forcomposite(w=2, 20, print1("w=", w, ": "); for(n=2, 10^3, if(Mod(n, w^2)^(w-1)==1, print1(n, ", "))); print("")) %Y A244752 Cf. A001220, A240719, A244249. %K A244752 nonn,tabl %O A244752 2,1 %A A244752 _Felix Fröhlich_, Jul 05 2014 %E A244752 a(17)-a(55) from _Robert Price_, Sep 07 2019