cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244780 Positive numbers primitively represented by the binary quadratic form (1, 1, 3).

This page as a plain text file.
%I A244780 #7 Oct 31 2016 10:22:21
%S A244780 1,3,5,9,11,15,23,25,27,31,33,37,45,47,53,55,59,67,69,71,75,81,89,93,
%T A244780 97,99,103,111,113,115,125,135,137,141,155,157,159,163,165,177,179,
%U A244780 181,185,191,199,201,207,213,223,225,229,235,243,251,253,257,265,267
%N A244780 Positive numbers primitively represented by the binary quadratic form (1, 1, 3).
%C A244780 Discriminant = -11.
%H A244780 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%p A244780 # Function PriRepBQF in A244779.
%p A244780 A244780_list := n -> PriRepBQF(1, 1, 3, n); A244780_list(267);
%t A244780 Reap[For[n = 1, n < 1000, n++, r = Reduce[x^2 + x y + 3 y^2 == n, {x, y}, Integers]; If[r =!= False, If[AnyTrue[{x, y} /. {ToRules[r /. C[1] -> 0]}, CoprimeQ @@ # &], Sow[n]]]]][[2, 1]] (* _Jean-François Alcover_, Oct 31 2016 *)
%Y A244780 Cf. A244779, A244819.
%K A244780 nonn
%O A244780 1,2
%A A244780 _Peter Luschny_, Jul 06 2014