cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244788 T(n,k)=Number of length n 0..k arrays with each partial sum starting from the beginning no more than one standard deviation from its mean.

Original entry on oeis.org

2, 1, 2, 2, 3, 4, 3, 6, 7, 8, 4, 13, 20, 17, 12, 5, 18, 51, 72, 41, 24, 4, 23, 88, 201, 268, 123, 36, 5, 26, 135, 454, 941, 876, 345, 72, 6, 33, 166, 851, 2424, 4153, 3236, 953, 144, 7, 48, 243, 1116, 5101, 13270, 18143, 12284, 2613, 252, 6, 57, 382, 1919, 7730, 30359, 73988
Offset: 1

Views

Author

R. H. Hardin, Jul 06 2014

Keywords

Comments

Table starts
...2....1......2.......3........4........5.........4.........5..........6
...2....3......6......13.......18.......23........26........33.........48
...4....7.....20......51.......88......135.......166.......243........382
...8...17.....72.....201......454......851......1116......1919.......3162
..12...41....268.....941.....2424.....5101......7730.....14519......26882
..24..123....876....4153....13270....30359.....54842....118709.....249138
..36..345...3236...18143....73988...197949....396488....940083....2280068
..72..953..12284...87353...384360..1246529...2909656...7875465...21006940
.144.2613..42396..405423..2126012..8310879..21610932..64293499..195017988
.252.7149.159876.1865359.11983288.53948531.162100016.547533077.1823805952
Computation in integer form, using 6 times the 0..k mean and 36 times the variance, mean6(k)=3*k; var36(k)=6*k*(2*k+1)-mean6(k)^2; then (6*sum{x(i),i=1..j}-j*mean6(k))^2<=j*var36(k) for all j=1..n

Examples

			Some solutions for n=10 k=4
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....3....2....3....2....3....3....3....4....3....4....3....2....2....4....4
..4....4....4....2....3....2....3....3....1....4....0....1....4....4....3....1
..3....3....2....3....2....1....1....3....1....3....3....4....2....2....1....2
..2....0....3....1....3....4....2....4....4....0....3....2....3....1....1....3
..4....4....3....2....4....3....4....2....0....0....1....4....3....4....4....0
..0....4....4....1....0....0....1....1....1....2....1....2....0....4....1....0
..4....1....0....3....0....0....2....4....3....3....3....4....3....0....4....4
..3....0....0....3....1....4....4....0....3....2....1....2....1....4....3....3