cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244807 The hexagonal spiral of Champernowne, read along the East (or 90-degree) ray.

Original entry on oeis.org

1, 2, 9, 1, 5, 3, 3, 7, 3, 1, 3, 0, 1, 9, 3, 2, 8, 4, 3, 8, 3, 4, 0, 0, 5, 4, 5, 7, 0, 8, 9, 7, 9, 1, 7, 1, 1, 1, 1, 1, 7, 1, 9, 1, 7, 1, 1, 1, 1, 2, 7, 2, 9, 2, 7, 2, 1, 2, 1, 2, 7, 3, 9, 3, 7, 3, 1, 3, 1, 3, 7, 4, 9, 4, 7, 4, 1, 4, 1, 4, 7, 5, 9, 5, 7, 5, 1, 5, 1, 6, 7, 6, 9, 6, 7, 6, 1, 7, 1, 7, 7, 7, 9, 8, 7
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Comments

Inspired by Stanislaw M. Ulam's hexagonal spiral, circa 1963. See example section of A056105.
When A056105, A056106, A056107, A056108, A056109 & A003215 were submitted, the offsets were 0. Here the offset is 1.

Examples

			.
..................7...5...1...6...5...1...5...5...1...4
.
................1...6...3...1...5...3...1...4...3...1...3
.
..............3...1...7...1...1...6...1...1...5...1...1...3
.
............7...1...1...0...0...1...9...9...8...9...7...4...1
.
..........1...8...0...7...8...7...7...7...6...7...5...9...1...2
.
........3...1...1...9...9...5...8...5...7...5...6...7...6...1...3
.
......8...1...1...8...6...4...2...4...1...4...0...5...4...9...3...1
.
....1...9...0...0...0...3...9...2...8...2...7...4...5...7...5...1...1
.
..3...1...2...8...6...4...3...1...8...1...7...2...9...5...3...9...1...3
.
9...2...1...1...1...4...0...9...1...1...0...1...6...3...4...7...4...2...1
.
..0...0...8...6...4...3...2...1...4...3...1...6...2...8...5...2...9...1...0
.
1...3...2...2...5...1...0...2...5...1...2...9...1...5...3...3...7...3...1...3
.
..2...1...8...6...4...3...2...1...6...7...8...5...2...7...5...1...9...1...1
.
....1...0...3...3...6...2...1...3...1...4...1...4...3...2...7...2...1...9
.
......1...4...8...6...4...3...2...2...2...3...2...6...5...0...9...1...2
.
........2...1...4...4...7...3...3...4...3...5...3...1...7...1...0...1
.
..........2...0...8...6...4...8...4...9...5...0...5...9...9...1...8
.
............1...5...5...5...6...6...6...7...6...8...6...0...1...2
.
..............2...1...8...6...8...7...8...8...8...9...9...9...1
.
................3...0...6...1...0...7...1...0...8...1...0...7
.
..................1...2...4...1...2...5...1...2...6...1...2
.
....................1...4...4...1...4...5...1...4...6...1
.
		

Crossrefs

Programs

  • Mathematica
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]];
    f[n_] := 3n^2- 8n +6 (* see formula section of A244807 *); Array[ almostNatural[ f@#, 10] &, 105]

Formula

For each 30 degrees of the compass, the corresponding spoke (or ray) has a generating formula as follows:
090: 3n^2- 8n +6
060: 12n^2-27n+16
030: 3n^2- 7n+ 5
000: 12n^2-25n+14
330: 3n^2 -6n +4
300: 12n^2-23n+12
270: 3n^2 -5n +3
240: 12n^2-21n+10
210: 3n^2 -4n +2
180: 12n^2-19n +8
150: 3n^2 -3n +1
120: 12n^2-17n+ 6
Also see formula section of A056105.