cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244819 Positive numbers primitively represented by the binary quadratic form (1, 0, 3).

Original entry on oeis.org

1, 3, 4, 7, 12, 13, 19, 21, 28, 31, 37, 39, 43, 49, 52, 57, 61, 67, 73, 76, 79, 84, 91, 93, 97, 103, 109, 111, 124, 127, 129, 133, 139, 147, 148, 151, 156, 157, 163, 169, 172, 181, 183, 193, 196, 199, 201, 211, 217, 219, 223, 228, 229, 237, 241, 244, 247, 259
Offset: 1

Views

Author

Peter Luschny, Jul 06 2014

Keywords

Comments

Discriminant = -12.
x^2 + 3*y^2 represents positive k properly (gcd(x, y) = 1), with nonnegative x, and the following multiplicities m(k): m(1) = 1, m(3) = 1, m(4) = 2, and if k = 3^a*4^b*Product_{j=1..P1} p1(j)^e1(j), with p1(j) primes 1 (mod 6) (A002476), e1(j) nonnegative integer numbers, and a and b from {0, 1}, then m(k) = 2^(P1+b). Shown by the lifting theorem (e.g., Apostol) for prime powers. Note that for prime 2 there is one solution of j^2 + 3 == 0 (mod 2) this corresponds the imprimitive reduced form (2, 2, 2), not to the one reduced primitive form (1, 0, 3) for discriminant -12 (A000003(3) = 1). - Wolfdieter Lang, Mar 02 2021

Examples

			Proper solution to x^2 + 3*y^2 = a(n), with x nonnegative: a(12 = 3*4) with (x, y) = (3, pm 1), pm = +1 or -1, multiplicity m(12) = 2, (a, b, P1) = (1, 1, 0); a(21 = 3*7) with (3, pm 2), m(21) = 2, (a, b, P1) = (1, 0, 1); a(49 = 7^2) with (1, pm 4), m(49) = 2 (a, b, P1) = (0, 0, 1)). - _Wolfdieter Lang_, Mar 02 2021
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976 (1986), Theorem 5.30, pp. 121-122.

Crossrefs

Programs

  • Maple
    # Function PriRepBQF in A244779.
    A244819 list := n -> PriRepBQF(1, 0, 3, n); A244819_list(259);
  • Mathematica
    Reap[For[n = 1, n < 1000, n++, r = Reduce[x^2 + 3 y^2 == n, {x, y}, Integers]; If[r =!= False, If[AnyTrue[{x, y} /. {ToRules[r /. C[1] -> 0]}, CoprimeQ @@ # &], Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2016 *)