A244824 Sum of all divisors of all positive integers <= 2^n.
1, 4, 15, 56, 220, 857, 3403, 13535, 54077, 215900, 862954, 3450545, 13802279, 55201838, 220792018, 883134861, 3532518195, 14129951284, 56519699688, 226078355122, 904312961284, 3617249936000, 14468996179294, 57875977567596, 231503907383054, 926015589350438
Offset: 0
Keywords
Examples
For n = 2 the sum of all divisors of all positive integers <= 4 is [1] + [1+2] + [1+3] + [1+2+4] = 1 + 3 + 4 + 7 = 15, so a(2) = 15.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..75
Programs
-
PARI
a(n) = sum(k=1, 2^n, k*floor(2^n/k) ) \\ Jens Kruse Andersen, Jul 26 2014
-
Python
from math import isqrt def A244824(n): return -(s:=isqrt(m:=1<
>1 # Chai Wah Wu, Oct 23 2023
Formula
a(n) ~ 2^(2*n-2) * Pi^2/3. - Vaclav Kotesovec, Oct 23 2023
Extensions
More terms from Jens Kruse Andersen, Jul 26 2014
Comments