cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244839 Decimal expansion of the Euler double sum sum_(m>0)(sum_(n>0)((-1)^(m+n-1)/((2m-1)(m+n-1)^3))).

Original entry on oeis.org

8, 7, 2, 9, 2, 9, 2, 8, 9, 5, 2, 0, 3, 5, 4, 5, 1, 8, 9, 5, 7, 9, 4, 1, 9, 9, 1, 0, 2, 8, 7, 3, 2, 5, 3, 7, 3, 8, 2, 9, 9, 4, 5, 2, 0, 5, 3, 4, 3, 2, 4, 4, 5, 6, 8, 9, 3, 7, 1, 6, 2, 1, 1, 2, 1, 7, 0, 4, 7, 7, 3, 1, 6, 7, 0, 9, 0, 9, 0, 5, 4, 7, 6, 9, 6, 9, 2, 0, 2, 3, 2, 2, 4, 3, 1, 5, 5, 5, 1, 7, 5, 2, 1, 2, 0
Offset: 0

Views

Author

Jean-François Alcover, Jul 07 2014

Keywords

Comments

The computation of this constant is given by Bailey & Borwein as an example of the use of CAS packages to check digital integrity of published mathematics.

Examples

			0.87292928952035451895794199102873253738299452053432445689371621121704773167...
		

Crossrefs

Cf. A099218.

Programs

  • Mathematica
    4*PolyLog[4, 1/2] - 151/2880*Pi^4 - Pi^2/6*Log[2]^2 + 1/6*Log[2]^4 + 7/2*Log[2]*Zeta[3] // RealDigits[#, 10, 105]& // First
  • PARI
    151*Pi^4/2880 + Pi^2*log(2)^2/6 - 4*polylog(4, 1/2) - log(2)^4/6 - 7*log(2)*zeta(3)/2 \\ Charles R Greathouse IV, Aug 27 2014

Formula

4*polylog(4, 1/2) - 151/2880*Pi^4 - Pi^2/6*log(2)^2 + 1/6*log(2)^4 + 7/2*log(2)*zeta(3).