This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244840 #27 Jul 28 2014 16:27:14 %S A244840 1,1,2,1,2,1,1,1,1,2,1,1,3,2,1,1,2,1,4,1,2,1,2,1,4,5,2,1,1,1,3,1,5,3, %T A244840 1,2,1,1,1,1,5,1,7,2,1,1,2,1,4,1,2,7,8,1,2,1,2,3,4,1,6,7,8,9,2,1,1,1, %U A244840 1,2,5,1,7,4,3,5,1,2 %N A244840 Denominators of the triangle T(n,k) = (n*(n+1)/2+k+1)/(k+1) for n >= k >= 0. %C A244840 Numerators: A244734(n,k). %C A244840 See A244734 for the first entries of the rational triangle T(n,k). %F A244840 a(n,k) = denominator((n*(n+1)/2 + k + 1)/(k+1)) for n >= k >= 0. %e A244840 T(0,0) = 1/1, T(1,0) = 2/1, T(1,1) = 3/2,... . %e A244840 The triangle a(n,k) begins: %e A244840 n/k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... %e A244840 0: 1 %e A244840 1: 1 2 %e A244840 2: 1 2 1 %e A244840 3: 1 1 1 2 %e A244840 4: 1 1 3 2 1 %e A244840 5: 1 2 1 4 1 2 %e A244840 6: 1 2 1 4 5 2 1 %e A244840 7: 1 1 3 1 5 3 1 2 %e A244840 8: 1 1 1 1 5 1 7 2 1 %e A244840 9: 1 2 1 4 1 2 7 8 1 2 %e A244840 10: 1 2 3 4 1 6 7 8 9 2 1 %e A244840 11: 1 1 1 2 5 1 7 4 3 5 1 2 %e A244840 12: 1 1 1 2 5 1 7 4 3 5 11 2 1 %e A244840 13: 1 2 3 4 5 6 1 8 9 10 11 12 1 2 %e A244840 14: 1 2 1 4 1 2 1 8 3 2 11 4 13 2 1 %e A244840 15: 1 1 1 1 1 1 7 1 3 1 11 1 13 7 1 2 %e A244840 16: 1 1 3 1 5 3 7 1 9 5 11 3 13 7 15 2 1 %e A244840 17: 1 2 1 4 5 2 7 8 1 10 11 4 13 14 5 16 1 2 %e A244840 18: 1 2 1 4 5 2 7 8 1 10 11 4 13 14 5 16 17 2 1 %e A244840 19: 1 1 3 2 1 3 7 4 9 1 11 6 13 7 3 8 17 9 1 2 %e A244840 20: 1 1 1 2 1 1 1 4 3 1 11 2 13 1 1 8 17 3 19 2 1 %e A244840 n/k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... %e A244840 .. reformatted - _Wolfdieter Lang_, Jul 28 2014 . %e A244840 The second column is of period 4: repeat 2, 2, 1, 1. From A014695 or A130658. %e A244840 The third column is of period 3: repeat 1, 1, 3. From A109007. %e A244840 The fourth column is of period 8: repeat 2, 2, 4, 4, 1, 1, 4, 4. %e A244840 The fifth column is of period 5: repeat 1, 1, 5, 5, 5. %e A244840 The sixth column is of period 12: repeat 2, 2, 3, 1, 2, 6, 1, 1, 6, 2, 1, 3 . %e A244840 The seventh column is of period 7: repeat 1, 1, 7, 7, 7, 7, 7. %e A244840 Hence the positive terms of A022998. %e A244840 Main diagonal: A000034(n). %e A244840 Alternate main and second diagonal: A130658(n). %e A244840 Common denominator by row: 1, 2, 2, 2, 6, 4, 20, 30, 70, ... . %t A244840 Table[(n*(n+1)/2+k+1)/(k+1) // Denominator, {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 08 2014 *) %Y A244840 Cf. A014695, A130658, A109007, A002260, A022998, A244734, A000034. %K A244840 nonn,frac,tabl,easy %O A244840 0,3 %A A244840 _Paul Curtz_, Jul 07 2014 %E A244840 Editse: Name reformulated, comment with T(n,k) reference added. - _Wolfdieter Lang_, Jul 28 2014