cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244840 Denominators of the triangle T(n,k) = (n*(n+1)/2+k+1)/(k+1) for n >= k >= 0.

This page as a plain text file.
%I A244840 #27 Jul 28 2014 16:27:14
%S A244840 1,1,2,1,2,1,1,1,1,2,1,1,3,2,1,1,2,1,4,1,2,1,2,1,4,5,2,1,1,1,3,1,5,3,
%T A244840 1,2,1,1,1,1,5,1,7,2,1,1,2,1,4,1,2,7,8,1,2,1,2,3,4,1,6,7,8,9,2,1,1,1,
%U A244840 1,2,5,1,7,4,3,5,1,2
%N A244840 Denominators of the triangle T(n,k) = (n*(n+1)/2+k+1)/(k+1) for n >= k >= 0.
%C A244840 Numerators: A244734(n,k).
%C A244840 See A244734 for the first entries of the rational triangle T(n,k).
%F A244840 a(n,k) = denominator((n*(n+1)/2 + k + 1)/(k+1)) for n >= k >= 0.
%e A244840 T(0,0) = 1/1, T(1,0) = 2/1, T(1,1) = 3/2,... .
%e A244840 The triangle a(n,k) begins:
%e A244840 n/k  0 1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17 18 19 20 ...
%e A244840 0:   1
%e A244840 1:   1 2
%e A244840 2:   1 2 1
%e A244840 3:   1 1 1 2
%e A244840 4:   1 1 3 2 1
%e A244840 5:   1 2 1 4 1 2
%e A244840 6:   1 2 1 4 5 2 1
%e A244840 7:   1 1 3 1 5 3 1 2
%e A244840 8:   1 1 1 1 5 1 7 2 1
%e A244840 9:   1 2 1 4 1 2 7 8 1  2
%e A244840 10:  1 2 3 4 1 6 7 8 9  2  1
%e A244840 11:  1 1 1 2 5 1 7 4 3  5  1  2
%e A244840 12:  1 1 1 2 5 1 7 4 3  5 11  2 1
%e A244840 13:  1 2 3 4 5 6 1 8 9 10 11 12 1   2
%e A244840 14:  1 2 1 4 1 2 1 8 3  2 11  4 13  2  1
%e A244840 15:  1 1 1 1 1 1 7 1 3  1 11  1 13  7  1  2
%e A244840 16:  1 1 3 1 5 3 7 1 9  5 11  3 13  7 15  2  1
%e A244840 17:  1 2 1 4 5 2 7 8 1 10 11  4 13 14  5 16  1  2
%e A244840 18:  1 2 1 4 5 2 7 8 1 10 11  4 13 14  5 16 17  2  1
%e A244840 19:  1 1 3 2 1 3 7 4 9  1 11  6 13  7  3  8 17  9  1  2
%e A244840 20:  1 1 1 2 1 1 1 4 3  1 11  2 13  1  1  8 17  3 19  2  1
%e A244840 n/k  0 1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17 18 19 20 ...
%e A244840 .. reformatted - _Wolfdieter Lang_, Jul 28 2014 .
%e A244840 The second column is of period 4: repeat 2, 2, 1, 1. From A014695 or A130658.
%e A244840 The third column is of period 3: repeat 1, 1, 3. From A109007.
%e A244840 The fourth column is of period 8: repeat 2, 2, 4, 4, 1, 1, 4, 4.
%e A244840 The fifth column is of period 5: repeat 1, 1, 5, 5, 5.
%e A244840 The sixth column is of period 12: repeat 2, 2, 3, 1, 2, 6, 1, 1, 6, 2, 1, 3 .
%e A244840 The seventh column is of period 7: repeat 1, 1, 7, 7, 7, 7, 7.
%e A244840 Hence the positive terms of A022998.
%e A244840 Main diagonal: A000034(n).
%e A244840 Alternate main and second diagonal: A130658(n).
%e A244840 Common denominator by row: 1, 2, 2, 2, 6, 4, 20, 30, 70, ... .
%t A244840 Table[(n*(n+1)/2+k+1)/(k+1) // Denominator, {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 08 2014 *)
%Y A244840 Cf. A014695, A130658, A109007, A002260, A022998, A244734, A000034.
%K A244840 nonn,frac,tabl,easy
%O A244840 0,3
%A A244840 _Paul Curtz_, Jul 07 2014
%E A244840 Editse: Name reformulated, comment with T(n,k) reference added. - _Wolfdieter Lang_, Jul 28 2014