A244858 Decimal expansion of the integral of log(x^2+y^2)/((1+x^2)*(1+y^2)) dx dy over the square [0,1]x[0,1] (negated).
6, 2, 4, 2, 3, 1, 7, 6, 1, 2, 7, 3, 5, 7, 5, 2, 1, 5, 6, 7, 1, 8, 0, 3, 4, 4, 4, 2, 0, 0, 3, 8, 7, 7, 3, 7, 4, 6, 3, 1, 2, 6, 8, 1, 5, 2, 8, 6, 1, 9, 1, 9, 2, 6, 8, 6, 0, 4, 7, 9, 3, 7, 0, 3, 9, 1, 7, 8, 8, 6, 0, 2, 6, 3, 0, 3, 5, 0, 9, 0, 8, 4, 9, 4, 0, 2, 7, 0, 0, 7, 7, 9, 0, 3, 4, 3, 7, 6, 4, 5, 1, 9, 3, 3, 3
Offset: 0
Examples
-0.6242317612735752156718034442003877374631268152861919268604793703917886...
Links
- D. H. Bailey and J. M. Borwein, Experimental computation as an ontological game changer, 2014. see p. 5.
- D. H. Bailey, J. M. Borwein and A. D. Kaiser, Automated Simplification of Large Symbolic Expressions, see p. 13.
Crossrefs
Cf. A244843.
Programs
-
Mathematica
Pi^2/16*Log[2] - 7/8*Zeta[3] // RealDigits[#, 10, 105]& // First
Formula
Pi^2/16*log(2) - 7/8*zeta(3).
Comments