A244844 Decimal expansion of 2F1(1, 1/4; 5/4; -1/4), where 2F1 is a Gaussian hypergeometric function.
9, 5, 5, 9, 3, 3, 8, 3, 7, 0, 0, 5, 5, 7, 0, 3, 4, 5, 1, 5, 8, 7, 2, 2, 5, 6, 3, 3, 9, 5, 8, 1, 5, 4, 2, 9, 9, 1, 6, 4, 2, 4, 1, 6, 1, 2, 6, 7, 8, 4, 5, 7, 5, 3, 8, 1, 6, 4, 3, 1, 5, 7, 6, 5, 8, 5, 3, 9, 9, 9, 1, 6, 4, 1, 5, 5, 9, 5, 8, 3, 8, 1, 6, 4, 2, 4, 2, 0, 3, 3, 8, 6, 6, 3, 8, 0, 2, 2, 3, 4, 1, 7, 2, 6
Offset: 0
Examples
0.9559338370055703451587225633958154299164241612678457538164315765853999...
Links
- D. H. Bailey and J. M. Borwein, Experimental computation as an ontological game changer, 2014, p. 14.
- Eric Weisstein's MathWorld, Hypergeometric Function.
- Eric Weisstein's MathWorld, PSLQ Algorithm.
Programs
-
Mathematica
Hypergeometric2F1[1, 1/4, 5/4, -1/4] // RealDigits[#, 10, 104]& // First
Formula
4*2F1(1, 1/4; 5/4; -1/4) + 2*arctan(1/2) - log(5) = Pi.
Comments