cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244845 Binary representation of 4^n - 2^(n+1) - 1.

This page as a plain text file.
%I A244845 #23 Oct 03 2016 15:24:12
%S A244845 111,101111,11011111,1110111111,111101111111,11111011111111,
%T A244845 1111110111111111,111111101111111111,11111111011111111111,
%U A244845 1111111110111111111111,111111111101111111111111,11111111111011111111111111,1111111111110111111111111111
%N A244845 Binary representation of 4^n - 2^(n+1) - 1.
%H A244845 Colin Barker, <a href="/A244845/b244845.txt">Table of n, a(n) for n = 2..500</a>
%H A244845 Wikipedia, <a href="http://en.wikipedia.org/wiki/Carol_number">Carol number</a>
%H A244845 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000).
%F A244845 a(n) = 111*a(n-1)-1110*a(n-2)+1000*a(n-3).
%F A244845 a(n) = (-1-9*10^(1+n)+100^n)/9.
%F A244845 G.f.: x^2*(89000*x^2-88790*x-111) / ((x-1)*(10*x-1)*(100*x-1)).
%e A244845 a(3) is 101111 because A093112(3) = 47 which is 101111 in base 2.
%t A244845 Table[FromDigits[IntegerDigits[4^n-2^(n+1)-1,2]],{n,2,15}] (* _Harvey P. Dale_, Oct 03 2016 *)
%o A244845 (PARI) vector(100, n, (100^(n+1)-9*10^(2+n)-1)/9)
%o A244845 (PARI) Vec(x^2*(89000*x^2-88790*x-111)/((x-1)*(10*x-1)*(100*x-1)) + O(x^100))
%o A244845 (PARI) a(n) = subst(Pol(binary(4^n-2^(n+1)-1)), x, 10); \\ _Michel Marcus_, Jul 08 2014
%Y A244845 Cf. A093112.
%K A244845 nonn,base,easy
%O A244845 2,1
%A A244845 _Colin Barker_, Jul 07 2014