cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244859 Least positive multiple of n which when written in base 10 is either a repunit or of the form 111...000.

Original entry on oeis.org

0, 1, 10, 111, 100, 10, 1110, 111111, 1000, 111111111, 10, 11, 11100, 111111, 1111110, 1110, 10000, 1111111111111111, 1111111110, 111111111111111111, 100, 111111, 110, 1111111111111111111111, 111000, 100, 1111110, 111111111111111111111111111, 11111100
Offset: 0

Views

Author

Chai Wah Wu, Jul 07 2014

Keywords

Comments

a(1017) has 1008 digits. - Michael S. Branicky, Feb 22 2024
a(0) = 0 by convention: It can be considered as a repunit with zero digits, A002275(0) = (10^0-1)/9, and it is a positive multiple of n in the sense of k*n with k > 0. - M. F. Hasler, Mar 04 2025

Crossrefs

Equal to A004290 for n = 1 .. 6.

Programs

  • Maple
    A244859:= proc(n) local m,d2,d5;
    d2:= padic:-ordp(n,2);
    d5:= padic:-ordp(n,5);
    m:= n/2^d2/5^d5;
    10^max(d2,d5)*(10^numtheory:-order(10,9*m)-1)/9
    end proc:
    A244859(0):= 0:
    seq(A244859(n),n= 0..100); # Robert Israel, Jul 08 2014
  • PARI
    apply( {A244859(n, m=Map(Mat([0,0])))=for(L=1,n, my(r=10^L\9); iferr(return(r-mapget(m,r%n)), E, mapput(m, r%n, r)))}, [0..33]) \\ M. F. Hasler, Mar 04 2025
  • Python
    def a(n):
        if n == 0: return 0
        moddict = {0: 0}
        for e in range(1, n+2):
            repe = (10**e-1)//9
            r = repe%n
            if r in moddict:
                return repe - moddict[r]
            else:
                moddict[r] = repe
    print([a(n) for n in range(29)]) # Michael S. Branicky, Feb 22 2024
    

Formula

a(n) = n*A244927(n). - M. F. Hasler, Mar 04 2025
a(3^k) = (10^(3^k)-1)/9. For n > 0, A055642(a(n)) <= n. If n > 2 is not a power of 3, then A055642(a(n)) < n. - Chai Wah Wu, Mar 04 2025