A244859 Least positive multiple of n which when written in base 10 is either a repunit or of the form 111...000.
0, 1, 10, 111, 100, 10, 1110, 111111, 1000, 111111111, 10, 11, 11100, 111111, 1111110, 1110, 10000, 1111111111111111, 1111111110, 111111111111111111, 100, 111111, 110, 1111111111111111111111, 111000, 100, 1111110, 111111111111111111111111111, 11111100
Offset: 0
Links
- Michael S. Branicky, Table of n, a(n) for n = 0..1016 (terms 101..936 from Robert Israel, terms 0..100 from Chai Wah Wu).
- Chai Wah Wu, Pigeonholes and repunits, Amer. Math. Monthly, 121 (2014), 529-533.
Programs
-
Maple
A244859:= proc(n) local m,d2,d5; d2:= padic:-ordp(n,2); d5:= padic:-ordp(n,5); m:= n/2^d2/5^d5; 10^max(d2,d5)*(10^numtheory:-order(10,9*m)-1)/9 end proc: A244859(0):= 0: seq(A244859(n),n= 0..100); # Robert Israel, Jul 08 2014
-
PARI
apply( {A244859(n, m=Map(Mat([0,0])))=for(L=1,n, my(r=10^L\9); iferr(return(r-mapget(m,r%n)), E, mapput(m, r%n, r)))}, [0..33]) \\ M. F. Hasler, Mar 04 2025
-
Python
def a(n): if n == 0: return 0 moddict = {0: 0} for e in range(1, n+2): repe = (10**e-1)//9 r = repe%n if r in moddict: return repe - moddict[r] else: moddict[r] = repe print([a(n) for n in range(29)]) # Michael S. Branicky, Feb 22 2024
Formula
a(n) = n*A244927(n). - M. F. Hasler, Mar 04 2025
a(3^k) = (10^(3^k)-1)/9. For n > 0, A055642(a(n)) <= n. If n > 2 is not a power of 3, then A055642(a(n)) < n. - Chai Wah Wu, Mar 04 2025
Comments