This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244860 #15 Mar 08 2025 14:50:48 %S A244860 1,1,1,2,0,1,2,0,1,2,0,1,1,1,1,0,3,0,1,1,1,2,0,0,2,0,1,1,1,2,1,0,0,3, %T A244860 2,0,1,1,0,0,1,1,0,4,1,0,1,0,0,1,4,2,0,1,0,1,0,1,2,1,1,0,3,0,1,0,1,1, %U A244860 1,2,1,0,2,3,0,1,0,0,1,0,3,0,1,0,1,1,2 %N A244860 Number of Fibonacci numbers in generation n of the tree at A232559. %C A244860 Generation n consists of F(n) = A000045(n) distinct Fibonacci numbers. Is {a(n)} bounded above? %H A244860 Rémy Sigrist, <a href="/A244860/a244860.gp.txt">PARI program</a> %e A244860 In the table below, g(n) denotes generation n of the tree at A232559. %e A244860 n ... g(n) ............ a(n) %e A244860 1 ... {1} ............. 1 %e A244860 2 ... {2} ............. 1 %e A244860 3 ... {3,4} ........... 1 %e A244860 4 ... {5,6,8} ......... 2 %e A244860 5 ... {7,9,10,12,16} .. 0 %t A244860 z = 32; g[1] = {1}; f1[x_] := f1[x] = x + 1; f2[x_] := f2[x] = 2 x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]; f = Table[Fibonacci[n], {n, 1, 90}]; Table[Length[Intersection[g[n], f]], {n, 1, z}] %o A244860 (PARI) \\ See Links section. %Y A244860 Cf. A232559, A000045. %K A244860 nonn %O A244860 1,4 %A A244860 _Clark Kimberling_, Jul 07 2014 %E A244860 More terms from _Rémy Sigrist_, Feb 13 2023