This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244887 #10 Apr 06 2018 02:39:11 %S A244887 2,20,135,770,4004,19656,92820,426360,1918620,8498776,37182145, %T A244887 161056350,691945800,2952675600,12527780760,52895074320,222399744300, %U A244887 931689977400,3890668331550,16201562020644,67298796085752,278927990831600,1153747598439800,4763749454427600,19637233862140440 %N A244887 Third column of triangle in A234950. %C A244887 Remmel (2014) asks for a formula. %H A244887 Vincenzo Librandi, <a href="/A244887/b244887.txt">Table of n, a(n) for n = 2..500</a> %H A244887 Jeffrey B. Remmel, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i3p2/0">Consecutive Up-down Patterns in Up-down Permutations</a>, Electron. J. Combin., 21 (2014), #P3.2. %F A244887 a(n) = A234950(n, 2). %t A244887 Table[Sum[Binomial[s, 2] Binomial[n+s, n] (n - s + 1) / (n + 1), {s, 2, n}], {n, 2, 15}] (* _Vincenzo Librandi_, Apr 06 2018 *) %o A244887 (PARI) a(n) = sum(s=2, n, binomial(s, 2)*binomial(n+s, n)*(n-s+1)/(n+1)); \\ _Michel Marcus_, Apr 06 2018 %Y A244887 Cf. A234950. %K A244887 nonn %O A244887 2,1 %A A244887 _N. J. A. Sloane_, Jul 12 2014 %E A244887 More terms from _Michel Marcus_, Apr 06 2018