This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244895 #24 Jan 05 2025 19:51:40 %S A244895 0,1,1,-1,-1,0,1,1,-1,-1,0,1,1,-1,-1,0,1,1,-1,-1,0,1,1,-1,-1,0,1,1,-1, %T A244895 -1,0,1,1,-1,-1,0,1,1,-1,-1,0,1,1,-1,-1,0,1,1,-1,-1,0,1,1,-1,-1,0,1,1, %U A244895 -1,-1,0,1,1,-1,-1,0,1,1,-1,-1,0,1,1,-1,-1,0,1 %N A244895 Period 5: repeat [0, 1, 1, -1, -1]. %C A244895 This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = z = -1. %H A244895 C. Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/17-1/kimberling1.pdf">Strong divisibility sequences and some conjectures</a>, Fib. Quart., 17 (1979), 13-17. %H A244895 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-1, -1, -1, -1). %F A244895 G.f.: x * (1 + x) * (1 - x^2) / (1 - x^5). %F A244895 Euler transform of length 5 sequence [ 1, -2, 0, 0, 1]. %F A244895 a(n) = -a(-n) = a(n + 5) for all n in Z. %F A244895 0 = (a(n) + a(n+2)) * (a(n) - a(n+1) + a(n+2)) for all n in Z. %F A244895 0 = a(n)*a(n+4) - a(n+1)*a(n+3) - a(n+2)*a(n+2) for all n in Z. %F A244895 0 = a(n)*a(n+5) + a(n+1)*a(n+4) - a(n+2)*a(n+3) for all n in Z. %F A244895 |A011558(n)| = |A080891(n)| = |A100047(n)| = |a(n)|. - _Michael Somos_, May 24 2015 %F A244895 a(5*n) = 0, a(5*n + 1) = a(5*n + 2) = 1, a(5*n + 3) = a(5*n + 4) = -1 for all n in Z. -_Michael Somos_, Nov 27 2019 %e A244895 G.f. = x + x^2 - x^3 - x^4 + x^6 + x^7 - x^8 - x^9 + x^11 + x^12 + ... %t A244895 a[ n_] := {1, 1, -1, -1, 0}[[Mod[ n, 5, 1]]]; (* _Michael Somos_, Jan 08 2015 *) %t A244895 a[ n_] := Sign[ Mod[ n, 5, -2]]; (* _Michael Somos_, Jan 08 2015 *) %t A244895 PadRight[{},120,{0,1,1,-1,-1}] (* _Harvey P. Dale_, Nov 11 2020 *) %o A244895 (PARI) {a(n) = [0, 1, 1, -1, -1][n%5 + 1]}; %o A244895 (PARI) {a(n) = sign( centerlift( Mod(n, 5)))}; %Y A244895 Cf. A011558, A080891, A100047. %K A244895 sign,easy %O A244895 0,1 %A A244895 _Michael Somos_, Jul 07 2014