This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244912 #50 Apr 28 2025 12:18:55 %S A244912 1,2,3,4,6,7,9,9,11,12,15,16,18,20,20,21,25,26,29,31,33,34,38,36,38, %T A244912 39,42,43,47,48,52,54,56,58,58,59,61,63,67,68,72,73,76,79,81,82,88,84, %U A244912 88,90,93,94,99,101,105,107,109,110,116,117,119,122,117,119,123 %N A244912 Sum of leading digits in representations of n in bases 2,3,...,n. %H A244912 Jens Kruse Andersen, <a href="/A244912/b244912.txt">Table of n, a(n) for n = 2..1000</a> %F A244912 a(n) = Sum_{k=2..n} floor(n/f(n,k)), with f(n,k) = k^floor(log_k(n)). - _Ridouane Oudra_, Apr 26 2025 %e A244912 8 in bases 2...8 is: %e A244912 1000 (base 2) %e A244912 22 (base 3) %e A244912 20 (base 4) %e A244912 13 (base 5) %e A244912 12 (base 6) %e A244912 11 (base 7) %e A244912 10 (base 8) %e A244912 The sum of first digits is 1+2+2+1+1+1+1 = 9, so a(8)=9. %t A244912 f[n_] := Sum[ IntegerDigits[n, k][[1]], {k, 2, n}]; Array[f, 70, 2] (* _Robert G. Wilson v_, Aug 02 2014 *) %o A244912 (Python) %o A244912 import math %o A244912 def modlg(a, b): %o A244912 return a // b**int(math.log(a, b)) %o A244912 for n in range(2,77): %o A244912 s=0 %o A244912 for k in range(2,n+1): %o A244912 s += modlg(n,k) %o A244912 print(s, end=', ') %o A244912 (PARI) a(n) = sum(i=2, n, digits(n, i)[1]); \\ _Michel Marcus_, Jul 17 2014 %Y A244912 Cf. A004125 (sum of last digits), A043306 (sum of all digits). %K A244912 nonn,base %O A244912 2,2 %A A244912 _Alex Ratushnyak_, Jul 08 2014