cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244913 Primes prime(k) such that 2^(k-1) - prime(k) is also prime.

This page as a plain text file.
%I A244913 #38 Jun 03 2025 11:08:15
%S A244913 11,13,17,19,23,37,61,233,257,1553,2879,4919,6389,7621,8081,35593,
%T A244913 37951,96263,206419,596803,1202837,2837851
%N A244913 Primes prime(k) such that 2^(k-1) - prime(k) is also prime.
%C A244913 a(22) > 1211303. - _J.W.L. (Jan) Eerland_, Dec 08 2022
%C A244913 a(23) > 3000000. - _Michael S. Branicky_, Jun 03 2025
%F A244913 {p in A000040: 2^[A000720(p-1)]-p in A000040}. - _R. J. Mathar_, Jul 11 2014
%p A244913 for i from 1 do
%p A244913     p := ithprime(i) ;
%p A244913     if isprime(2^(numtheory[pi](p-1))-p) then
%p A244913         printf("%d,\n",p) ;
%p A244913     end if;
%p A244913 end do: # _R. J. Mathar_, Jul 11 2014
%t A244913 p = 2; lst = {}; While[p < 800001, If[ PrimeQ[ 2^(PrimePi@ p-1) - p], AppendTo[lst, p]; Print@ p]; p = NextPrime@ p]; lst
%t A244913 n=1;Monitor[Parallelize[While[True,If[PrimeQ[2^(PrimePi[Prime[n]-1])-Prime[n]],Print[Prime[n]]];n++];n],n] (* _J.W.L. (Jan) Eerland_, Dec 08 2022 *)
%o A244913 (PARI) is(n)=isprime(n) && isprime(2^primepi(n-1)-n) \\ _Charles R Greathouse IV_, Feb 25 2017
%Y A244913 Cf. A078686, A227126.
%K A244913 nonn,more
%O A244913 1,1
%A A244913 _Robert G. Wilson v_, Jul 09 2014
%E A244913 a(21) from _J.W.L. (Jan) Eerland_, Dec 08 2022
%E A244913 a(22) from _Michael S. Branicky_, Jun 02 2025