cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244918 Primes p where the digital sum is equal to 68.

This page as a plain text file.
%I A244918 #31 Mar 16 2022 16:39:08
%S A244918 59999999,69999899,69999989,78998999,88989899,88999979,89699999,
%T A244918 89799989,89989799,89989979,89997899,89997989,89999699,89999969,
%U A244918 97889999,98699999,98879999,98899799,98979989,98988899,98989889,98997989,98998979,98999969
%N A244918 Primes p where the digital sum is equal to 68.
%H A244918 Vincenzo Librandi and Chai Wah Wu, <a href="/A244918/b244918.txt">Table of n, a(n) for n = 1..10000</a> n = 1..45 from Vincenzo Librandi.
%e A244918 69999899 is a prime with sum of the digits = 68, hence belongs to the sequence.
%t A244918 Select[Prime[Range[10000000]], Total[IntegerDigits[#]]==68 &]
%o A244918 (Magma) [p: p in PrimesUpTo(100000000) | &+Intseq(p) eq 68];
%o A244918 (Python) # see code in A107579: the same code can be used to produce this sequence, by giving the initial term p = 6*10**7-1, for digit sum 68. - _M. F. Hasler_, Mar 16 2022
%Y A244918 Cf. Primes p where the digital sum  is equal to k: 2, 11 and 101 for k=2; A062339 (k=4), A062341 (k=5), A062337 (k=7), A062343 (k=8), A107579 (k=10), A106754 (k=11), A106755 (k=13), A106756 (k=14), A106757 (k=16), A106758 (k=17), A106759 (k=19), A106760 (k=20), A106761 (k=22), A106762 (k=23), A106763 (k=25), A106764 (k=26), A048517 (k=28),  A106766 (k=29), A106767 (k=31), A106768 (k=32), A106769 (k=34), A106770 (k=35), A106771 (k=37), A106772 (k=38), A106773 (k=40), A106774 (k=41), A106775 (k=43), A106776 (k=44), A106777 (k=46), A106778 (k=47), A106779 (k=49), A106780 (k=50), A106781 (k=52), A106782 (k=53), A106783 (k=55), A106784 (k=56), A106785 (k=58), A106786 (k=59), A106787 (k=61), A107617 (k=62), A107618 (k=64), A107619 (k=65), A106807 (k=67), this sequence (k=68), A181321 (k=70).
%K A244918 nonn,base
%O A244918 1,1
%A A244918 _Vincenzo Librandi_, Jul 08 2014