cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244919 For odd prime p, largest k such that binomial(2p-1, p-1) is congruent to 1 modulo p^k.

This page as a plain text file.
%I A244919 #15 Aug 24 2014 10:30:13
%S A244919 2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
%T A244919 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
%U A244919 3,3,3,3
%N A244919 For odd prime p, largest k such that binomial(2p-1, p-1) is congruent to 1 modulo p^k.
%C A244919 Wolstenholme's theorem implies that k >= 3 for all p > 3. The prime p is a Wolstenholme prime if and only if k > 3. For the primes up to 10^9 this holds only for p = 16843 and p = 2124679, where in each case a(n) = 4 (i.e. a(1944) = 4 and a(157504) = 4).
%H A244919 R. J. McIntosh, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa71/aa7144.pdf">On the converse of Wolstenholme's theorem</a>, Acta Arith., Volume 71, Issue 4 (1995), 381-389.
%H A244919 R. J. McIntosh and E. L. Roettger, <a href="http://dx.doi.org/10.1090/S0025-5718-07-01955-2">A search for Fibonacci-Wieferich and Wolstenholme primes</a>, Math. Comp., 76 (2007), 2087-2094.
%o A244919 (PARI) forprime(p=3, 10^3, k=1; while(Mod(binomial(2*p-1, p-1), p^k)==1, j=k; k++); if(Mod(binomial(2*p-1, p-1), p^k)!=1, print1(j, ", ")))
%Y A244919 Cf. A034602, A088164.
%K A244919 nonn
%O A244919 2,1
%A A244919 _Felix Fröhlich_, Jul 08 2014