This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244926 #20 Jun 15 2022 01:50:04 %S A244926 1,2,247,2279,9167,57479,200479,518039,2119207,3685439,9240079, %T A244926 16384279,31536647,101601359,140558807,189771287,299142967,354032447, %U A244926 384150199,486103279,565468637,802008239,853795074,1107541759,1328438479,1494742004,1580837719,1768013279 %N A244926 Numbers m such that there is an integer k with the property that antisigma(m) = k * sigma(m) + k. %C A244926 Numbers m such that A244329(m) = floor(antisigma(m) / sigma(m)) = antisigma(m) mod sigma(m) = A232324(n). %C A244926 Corresponding values of integers k: 0, 0, 108, 1092, 4488, 28500, 99792, 258300, 1058148, ... %C A244926 Numbers m such that sigma(m) + 1 divides antisigma(m). - _Kevin P. Thompson_, Nov 27 2021 %H A244926 Kevin P. Thompson, <a href="/A244926/b244926.txt">Table of n, a(n) for n = 1..49</a> %e A244926 247 is in sequence because 30348 = antisigma(247) = 108 * sigma(247) + 108 = 108*280 + 108. %o A244926 (Magma) [n: n in [1..100000] | Floor(((n*(n+1)div 2) - (SumOfDivisors(n))) div (SumOfDivisors(n))) eq ((n*(n+1)div 2) - (SumOfDivisors(n))) mod (SumOfDivisors(n))] %o A244926 (PARI) isok(m) = my(s=sigma(m)); denominator((m*(m+1)/2-s)/(s+1)) == 1; \\ _Michel Marcus_, Jan 21 2022 %Y A244926 Cf. A024816 (antisigma), A000203 (sigma), A244329, A232324. %K A244926 nonn %O A244926 1,2 %A A244926 _Jaroslav Krizek_, Jul 08 2014 %E A244926 a(10)-a(28) from _Kevin P. Thompson_, Nov 27 2021