This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244932 #11 May 22 2025 10:21:39 %S A244932 2,13,10,17,6,37,12,13,16,27,24,71,16,31,64,43,18,43,26,23,32,29,24, %T A244932 79,32,53,34,61,92,47,40,33,34,57,36,47,40,53,40,79,44,43,68,91,68,57, %U A244932 66,61,60,53,58,83,60,91,94,61,82,61,70,101,82,71,68,145,82,67,76,69,100 %N A244932 Least number k > n such that k^8 + n^8 is prime. %C A244932 a(n) = n+1 iff n is in A153504. %H A244932 Jens Kruse Andersen, <a href="/A244932/b244932.txt">Table of n, a(n) for n = 1..10000</a> %e A244932 13^8 + 14^8 = 2291519777 is not prime, 13^8 + 15^8 = 3378621346 is not prime. 13^8 + 16^8 = 5110698017 is prime. Thus a(13) = 16. %o A244932 (Python) %o A244932 import sympy %o A244932 from sympy import isprime %o A244932 def a(n): %o A244932 for k in range(n+1,10**4): %o A244932 if isprime(k**8+n**8): %o A244932 return k %o A244932 n = 1 %o A244932 while n < 100: %o A244932 print(a(n),end=', ') %o A244932 n += 1 %o A244932 (PARI) a(n)=for(k=n+1,10^4,if(isprime(k^8+n^8),return(k))) %o A244932 n=1;while(n<100,print1(a(n),", ");n++) %Y A244932 Cf. A158979, A089489, A242553. %K A244932 nonn %O A244932 1,1 %A A244932 _Derek Orr_, Jul 08 2014