This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244963 #36 Mar 02 2021 06:00:50 %S A244963 0,0,0,1,0,0,0,3,1,0,0,4,0,0,0,7,0,3,0,6,0,0,0,12,1,0,4,8,0,0,0,15,0, %T A244963 0,0,19,0,0,0,18,0,0,0,12,6,0,0,28,1,3,0,14,0,12,0,24,0,0,0,24,0,0,8, %U A244963 31,0,0,0,18,0,0,0,51,0,0,4,20,0,0,0,42,13 %N A244963 a(n) = sigma(n) - n * Product_{p|n, p prime} (1 + 1/p). %C A244963 a(n) = 0 if and only if n is a squarefree number (A005117), otherwise a(n) > 0. %C A244963 If n is semiprime, then a(n) = 1+floor(sqrt(n))-ceiling(sqrt(n)). - _Wesley Ivan Hurt_, Dec 25 2016 %H A244963 Antti Karttunen, <a href="/A244963/b244963.txt">Table of n, a(n) for n = 1..16384</a> %F A244963 a(n) = A000203(n) - A001615(n). %F A244963 Sum_{k=1..n} a(k) ~ c*n^2 + O(n*log(n)), where c = Pi^2/12 - 15/(2*Pi^2) = 0.062558... - _Amiram Eldar_, Mar 02 2021 %p A244963 A244963:= n -> numtheory:-sigma(n) - n*mul(1+1/t[1],t=ifactors(n)[2]): %p A244963 seq(A244963(n),n=1..1000); # _Robert Israel_, Jul 15 2014 %t A244963 nn = 200;Table[Sum[d, {d, Divisors[n]}], {n, 1, nn}] - %t A244963 Table[Sum[n/d Abs[MoebiusMu[d]], {d, Divisors[n]}], {n, 1, nn}] (* _Geoffrey Critzer_, Mar 18 2015 *) %o A244963 (PARI) %o A244963 A001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ This function from _Charles R Greathouse IV_, Sep 09 2014 %o A244963 A244963(n) = (sigma(n) - A001615(n)); \\ _Antti Karttunen_, Nov 22 2017 %Y A244963 Cf. A000203 (sigma), A001615 (Dedekind psi), A005117 (positions of zeros), A013929, A049417. %K A244963 nonn,easy %O A244963 1,8 %A A244963 _Omar E. Pol_, Jul 15 2014