This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244968 #22 Nov 21 2014 02:17:26 %S A244968 1,4,9,28,54,151 %N A244968 Area between two valleys at height 0 under the infinite Dyck path related to partitions in which the k-th ascending line segment has A141285(k) steps and the k-th descending line segment has A194446(k) steps, k >= 1, multiplied by 2. %e A244968 For k = 6, the diagram 1 represents the partitions of 6. The diagram 2 is a minimalist version of the structure which does not contain the axes [X, Y], see below: %e A244968 . %e A244968 . j Diagram 1 Partitions Diagram 2 %e A244968 . _ _ _ _ _ _ _ _ _ _ _ _ %e A244968 . 11 |_ _ _ | 6 _ _ _ | %e A244968 . 10 |_ _ _|_ | 3+3 _ _ _|_ | %e A244968 . 9 |_ _ | | 4+2 _ _ | | %e A244968 . 8 |_ _|_ _|_ | 2+2+2 _ _|_ _|_ | %e A244968 . 7 |_ _ _ | | 5+1 _ _ _ | | %e A244968 . 6 |_ _ _|_ | | 3+2+1 _ _ _|_ | | %e A244968 . 5 |_ _ | | | 4+1+1 _ _ | | | %e A244968 . 4 |_ _|_ | | | 2+2+1+1 _ _|_ | | | %e A244968 . 3 |_ _ | | | | 3+1+1+1 _ _ | | | | %e A244968 . 2 |_ | | | | | 2+1+1+1+1 _ | | | | | %e A244968 . 1 |_|_|_|_|_|_| 1+1+1+1+1+1 | | | | | | %e A244968 . %e A244968 Then we use the elements from the above diagram to draw an infinite Dyck path in which the j-th odd-indexed segment has A141285(j) up-steps and the j-th even-indexed segment has A194446(j) down-steps. %e A244968 For the illustration of initial terms we use two opposite Dyck paths, as shown below: %e A244968 11 ........................................................... %e A244968 . /\ %e A244968 . / %e A244968 . / %e A244968 7 .................................. / %e A244968 . /\ / %e A244968 5 .................... / \ /\/ %e A244968 . /\ / \ /\ / %e A244968 3 .......... / \ / \ / \/ %e A244968 2 ..... /\ / \ /\/ \ / %e A244968 1 .. /\ / \ /\/ \ / \ /\/ %e A244968 0 /\/ \/ \/ \/ \/ %e A244968 . \/\ /\ /\ /\ /\ %e A244968 . \/ \ / \/\ / \ / \/\ %e A244968 . 1 \/ \ / \/\ / \ %e A244968 . 4 \ / \ / \ /\ %e A244968 . 9 \/ \ / \/ \ %e A244968 . \ / \/\ %e A244968 . 28 \/ \ %e A244968 . \ %e A244968 . 54 \ %e A244968 . \ %e A244968 . \/ %e A244968 . %e A244968 The diagram is infinite. Note that the n-th largest peak between two valleys at height 0 is also the partition number A000041(n). %e A244968 Calculations: %e A244968 a(1) = 1. %e A244968 a(2) = 2^2 = 4. %e A244968 a(3) = 3^2 = 9. %e A244968 a(4) = 2^2-1^2+5^2 = 4-1+25 = 28. %e A244968 a(5) = 3^2-2^2+7^2 = 9-4+49 = 54. %e A244968 a(6) = 2^2-1^2+5^2-3^2+6^2-5^2+11^2 = 4-1+25-9+36-25+121 = 151. %Y A244968 Cf. A000041, A135010, A141285, A193870, A194446, A194447, A206437, A211009, A211978, A220517, A225600, A225610, A228109, A228110, A228350, A230440, A233968. %K A244968 nonn,more %O A244968 1,2 %A A244968 _Omar E. Pol_, Nov 08 2014