cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244976 Decimal expansion of Pi/(8*sqrt(2)).

This page as a plain text file.
%I A244976 #26 Feb 16 2025 08:33:23
%S A244976 2,7,7,6,8,0,1,8,3,6,3,4,8,9,7,8,9,0,4,3,8,4,9,2,5,6,1,8,7,8,7,9,3,3,
%T A244976 5,6,1,6,3,4,1,3,8,5,5,5,8,5,9,8,0,6,3,8,9,4,2,8,3,7,2,2,5,4,3,4,7,7,
%U A244976 7,1,7,4,5,6,8,7,1,7,1,1,9,4,1,0,9,5,7,9,3,3,4,2,2,7,9,7,8,2,7,3,3,5,2,1,3
%N A244976 Decimal expansion of Pi/(8*sqrt(2)).
%D A244976 George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.
%H A244976 Vincenzo Librandi, <a href="/A244976/b244976.txt">Table of n, a(n) for n = 0..10000</a>
%H A244976 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BetaFunction.html">Beta Function</a>.
%H A244976 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F A244976 Equals Integral_{x=0..1} (x^2*(1 + x^2))/(1 + x^4)^2 dx.
%F A244976 Equals beta(3/2, 1/2)/(4*sqrt(2)), where 'beta' is Euler's beta function.
%F A244976 Equals Sum_{k >= 0} (-1)^k * (2*k + 1)/((4*k + 1)*(4*k + 3)). - _Peter Bala_, Sep 21 2016
%F A244976 Equals Integral_{x>=0} 1/(x^2 + 2)^2 dx. - _Amiram Eldar_, Nov 16 2021
%e A244976 0.277680183634897890438492561878793356163413855585980638942837225434777...
%t A244976 RealDigits[Pi/(8*Sqrt[2]), 10, 105] // First
%o A244976 (PARI) Pi/(8*sqrt(2)) \\ _G. C. Greubel_, Jul 05 2017
%Y A244976 Cf. A063448, A247719, A093954, A193887.
%K A244976 nonn,cons,easy
%O A244976 0,1
%A A244976 _Jean-François Alcover_, Jul 09 2014