cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244995 Decimal expansion of p_4(1), a particular radial probability density of a 4-step uniform random walk.

Original entry on oeis.org

3, 2, 9, 9, 3, 3, 8, 0, 1, 0, 6, 0, 0, 6, 4, 0, 5, 9, 0, 3, 9, 7, 9, 0, 6, 5, 2, 2, 8, 6, 9, 5, 2, 9, 6, 4, 6, 9, 3, 6, 8, 3, 0, 4, 8, 0, 7, 5, 8, 3, 4, 2, 7, 7, 3, 6, 0, 2, 6, 0, 3, 9, 3, 6, 2, 6, 0, 2, 7, 5, 7, 4, 2, 5, 7, 2, 6, 4, 4, 0, 5, 8, 4, 2, 3, 3, 4, 1, 5, 5, 1, 7, 2, 2, 6, 7, 4, 9, 4, 8, 8, 9, 4, 3
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2014

Keywords

Examples

			0.329933801060064059039790652286952964693683048075834277360260393626...
		

Programs

  • Maple
    evalf(GAMMA(1/15)*GAMMA(2/15)*GAMMA(4/15)*GAMMA(8/15) / (8*sqrt(5)*Pi^4), 120); # Vaclav Kotesovec, Jun 10 2019
  • Mathematica
    RealDigits[(2*Sqrt[15]*Re[HypergeometricPFQ[{1/2, 1/2, 1/2}, {5/6, 7/6}, 125/4]])/Pi^2, 10, 104] // First

Formula

p_4(x) = (2*sqrt(16-x^2)*Re(3F2(1/2, 1/2, 1/2; 5/6, 7/6; (16-x^2)^3/(108*x^4))))/(Pi^2*x) where 3F2 is the hypergeometric function.
p_4(1) = (2*sqrt(15)*Re(3F2(1/2, 1/2, 1/2; 5/6, 7/6; 125/4)))/Pi^2.
p_4(1) = (1/(2*Pi^2))*sqrt((gamma(1/15)*gamma(2/15)*gamma(4/15)*gamma(8/15))/(5*gamma(7/15)*gamma(11/15)*gamma(13/15)*gamma(14/15))).
Equals Gamma(1/15) * Gamma(2/15) * Gamma(4/15) * Gamma(8/15) / (8*sqrt(5)*Pi^4). - Vaclav Kotesovec, Jun 10 2019