This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244999 #8 Jul 10 2014 02:34:07 %S A244999 5,4,4,4,1,2,5,6,1,7,5,2,1,8,5,5,8,5,1,9,5,8,7,8,0,6,2,7,4,5,0,2,7,6, %T A244999 7,6,6,6,6,0,5,2,8,0,2,0,2,8,5,2,7,4,4,2,2,8,7,0,2,8,4,9,3,9,0,2,1,4, %U A244999 3,6,9,1,4,2,9,2,6,6,8,3,8,7,0,5,8,4,9,2,4,1,5,7 %N A244999 Decimal expansion of the moment derivative W_5'(0) associated with the radial probability distribution of a 5-step uniform random walk. %H A244999 Jonathan M. Borwein, Armin Straub, James Wan, and Wadim Zudilin, <a href="http://dx.doi.org/10.4153/CJM-2011-079-2">Densities of Short Uniform Random Walks</a> p. 978, Canad. J. Math. 64(2012), 961-990. %F A244999 W_5'(0) = log(2) - gamma - integral_{x=0..1}((J_0(x)^5-1)/x) - integral_{x>1}(J_0(x)^5/x), where J_0 is the Bessel function of the first kind. %e A244999 0.54441256175218558519587806274502767666605280202852744228702849390214369... %t A244999 digits = 92; Log[2] - EulerGamma - NIntegrate[(BesselJ[0, x]^5 - 1)/x, {x, 0, 1}, WorkingPrecision -> digits + 20] - NIntegrate[BesselJ[0, x]^5/x, {x, 1, Infinity}, WorkingPrecision -> digits + 20] // RealDigits[#, 10, digits] & // First %Y A244999 Cf. A244996, A244997. %K A244999 nonn,cons,walk %O A244999 0,1 %A A244999 _Jean-François Alcover_, Jul 09 2014