This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245012 #34 Sep 14 2023 03:38:23 %S A245012 1,1,1,3,16,125,1296,15967,225184,3573369,63006400,1222037531, %T A245012 25856693424,592684459237,14630486811136,386952126342615, %U A245012 10916525199478336,327220530559545713,10385328804324011136,347921328910693707955,12269256633867840769360 %N A245012 The number of labeled caterpillar graphs on n nodes. %C A245012 All trees of order less than 7 are caterpillars so for 0 <= n < 7, a(n) = n^(n-2) = A000272(n). %C A245012 Call a rooted labeled tree of height at most one a short tree. A caterpillar is a single short tree or a succession of short trees sandwiched between two nontrivial short trees. - _Geoffrey Critzer_, Aug 03 2016 %H A245012 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CaterpillarGraph.html">Caterpillar Graph</a> %F A245012 E.g.f.: C(x) - x^2/2! + x + 1 + Sum_{k>=0} A(x)^k*C(x)^2/2, where A(x) = x*exp(x) and C(x) = A(x) - x. %e A245012 a(7) = 15967 because there is only one unlabeled tree that is not a caterpillar (Cf. A052471): %e A245012 o-o-o-o-o %e A245012 | %e A245012 o %e A245012 | %e A245012 o %e A245012 This tree has 840 labelings. So 7^5 - 840 = 15967. %t A245012 nn=20;a=x Exp[x];c=a-x;Range[0,nn]!CoefficientList[Series[c-x^2/2!+x+1+Sum[a^k c^2/2,{k,0,nn}],{x,0,nn}],x] %o A245012 (PARI) N=33; x='x+O('x^N); %o A245012 A = x *exp(x); C = A - x; %o A245012 egf = C - x^2/2! + x + 1 + sum(k=0, N, A^k*C^2/2); %o A245012 Vec(serlaplace(egf)) %o A245012 \\ _Joerg Arndt_, Jul 10 2014 %Y A245012 Cf. A005418. %K A245012 nonn %O A245012 0,4 %A A245012 _Geoffrey Critzer_, Jul 09 2014