This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245013 #49 May 29 2025 11:10:16 %S A245013 1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,3,3,1,1,1,1,5,5,5,1,1,1,1,8,11,11, %T A245013 8,1,1,1,1,13,21,35,21,13,1,1,1,1,21,43,93,93,43,21,1,1,1,1,34,85,269, %U A245013 314,269,85,34,1,1,1,1,55,171,747,1213,1213,747,171,55,1,1 %N A245013 Number A(n,k) of tilings of a k X n rectangle using 1 X 1 squares and 2 X 2 squares; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A245013 Liang Kai, <a href="/A245013/b245013.txt">Antidiagonals n = 0..80, flattened</a> (antidiagonals n = 0..45 from Alois P. Heinz) %H A245013 Kai Liang, <a href="https://arxiv.org/abs/2505.12776">Independent Set Enumeration in King Graphs by Tensor Network Contractions</a>, arXiv:2505.12776 [math.CO], 2025. See p. 4. %H A245013 R. J. Mathar, <a href="https://arxiv.org/abs/1609.03964">Tiling n x m rectangles with 1 x 1 and s x s squares</a>, arXiv:1609.03964 [math.CO], 2016. %H A245013 Johan Nilsson, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Nilsson/nilsson15.html">On Counting the Number of Tilings of a Rectangle with Squares of Size 1 and 2</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.2. %e A245013 A(3,3) = 5: %e A245013 ._._._. .___._. ._.___. ._._._. ._._._. %e A245013 |_|_|_| | |_| |_| | |_|_|_| |_|_|_| %e A245013 |_|_|_| |___|_| |_|___| |_| | | |_| %e A245013 |_|_|_| |_|_|_| |_|_|_| |_|___| |___|_| . %e A245013 Square array A(n,k) begins: %e A245013 1, 1, 1, 1, 1, 1, 1, 1, ... %e A245013 1, 1, 1, 1, 1, 1, 1, 1, ... %e A245013 1, 1, 2, 3, 5, 8, 13, 21, ... %e A245013 1, 1, 3, 5, 11, 21, 43, 85, ... %e A245013 1, 1, 5, 11, 35, 93, 269, 747, ... %e A245013 1, 1, 8, 21, 93, 314, 1213, 4375, ... %e A245013 1, 1, 13, 43, 269, 1213, 6427, 31387, ... %e A245013 1, 1, 21, 85, 747, 4375, 31387, 202841, ... %p A245013 b:= proc(n, l) option remember; local m, k; m:= min(l[]); %p A245013 if m>0 then b(n-m, map(x->x-m, l)) %p A245013 elif n=0 then 1 %p A245013 else for k while l[k]>0 do od; b(n, subsop(k=1, l))+ %p A245013 `if`(n>1 and k<nops(l) and l[k+1]=0, %p A245013 b(n, subsop(k=2, k+1=2, l)), 0) %p A245013 fi %p A245013 end: %p A245013 A:= (n, k)-> `if`(min(n, k)<2, 1, b(max(n, k), [0$min(n, k)])): %p A245013 seq(seq(A(n, d-n), n=0..d), d=0..14); %t A245013 b[n_, l_] := b[n, l] = Module[{m=Min[l], k}, If[m>0, b[n-m, l-m], If[n == 0, 1, k=Position[l, 0, 1, 1][[1, 1]]; b[n, ReplacePart[l, k -> 1]] + If[n>1 && k<Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 2, k+1 -> 2}]], 0]]]]; A[n_, k_] := If[Min[n, k]<2, 1, b[Max[n, k], Table[0, {Min[n, k]}]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover_, Dec 11 2014, after _Alois P. Heinz_ *) %Y A245013 Columns (or rows) k=0+1,2-10 give: A000012, A000045(n+1), A001045(n+1), A054854, A054855, A063650, A063651, A063652, A063653, A063654. %Y A245013 Main diagonal gives A063443. %K A245013 nonn,tabl %O A245013 0,13 %A A245013 _Alois P. Heinz_, Sep 16 2014