This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245014 #46 Nov 14 2014 18:21:35 %S A245014 3,47,347,6079,10139,147311,687931,18874111,37748411,104857199, %T A245014 276823579,805305791,29662117211,30064770287,64424508539, %U A245014 2473901161471,11098195491707,7421703486191,83562883709531,527765581330879,369435906930971,27866022694353007,19421773393033147 %N A245014 Least prime p such that 2n*4^n divides p + 4n^2 + 1. %C A245014 All those terms such that 2n*4^n is equal to p + 4n^2 + 1 belong to A247024. %H A245014 Charles R Greathouse IV, <a href="/A245014/b245014.txt">Table of n, a(n) for n = 1..500</a> %F A245014 a(n) << n^5*1024^n by Xylouris' version of Linnik's theorem. - _Charles R Greathouse IV_, Sep 18 2014 %t A245014 a[n_] := With[{k = n*2^(2*n+1)}, p = -4*n^2-1; While[!PrimeQ[p += k]]; p]; Table[a[n], {n, 1, 23}] (* _Jean-François Alcover_, Oct 09 2014, translated from _Charles R Greathouse IV_'s PARI code *) %o A245014 (PARI) search(u)={ /* Slow, u must be a small integer. */ %o A245014 my(log2=log(2),q,t,t0,L1=List()); %o A245014 forprime(y=3,prime(10^u), %o A245014 t=log(y+1)\log2; %o A245014 while(t>t0, %o A245014 q=4*t^2+y+1; %o A245014 if(q%(t*(2^(2*t+1)))==0, %o A245014 listput(L1,[t,y]); %o A245014 t0=t; %o A245014 break %o A245014 , %o A245014 t-- %o A245014 ))); %o A245014 L1 %o A245014 } %o A245014 (PARI) a(n)=my(k=n<<(2*n+1),p=-4*n^2-1); while(!isprime(p+=k),); p \\ _Charles R Greathouse IV_, Sep 18 2014 %Y A245014 Cf. A247024. %K A245014 nonn %O A245014 1,1 %A A245014 _R. J. Cano_ Sep 17 2014 %E A245014 a(10)-a(23) from _Charles R Greathouse IV_, Sep 18 2014