cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245020 Number of ordered n-tuples of positive integers, whose minimum is 0 and maximum is 5.

This page as a plain text file.
%I A245020 #36 Jan 14 2023 11:18:45
%S A245020 0,2,30,302,2550,19502,140070,963902,6433590,41983502,269335110,
%T A245020 1705278302,10686396630,66425568302,410223570150,2520229093502,
%U A245020 15417960407670,93999281613902,571487645261190,3466523088409502,20987674370482710,126870924446280302
%N A245020 Number of ordered n-tuples of positive integers, whose minimum is 0 and maximum is 5.
%C A245020 For given k and n positive integers, let T(k,n) represent the number of n-tuples of positive integers, whose minimum is zero and maximum is k. In this notation, the sequence corresponds to a(n) = T(5,n).
%H A245020 O. Bagdasar, <a href="http://www.np.ac.rs/downloads/publications/VOL6_Br_2/vol6br2-3.pdf">On Some Functions Involving the lcm and gcd of Integer Tuples</a>, Scientific publications of the state university of Novi Pazar, Ser. A: Appl. Maths. Inform. and Mech., Vol. 6, 2 (2014), 91--100.
%H A245020 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (15,-74,120).
%F A245020 a(n) = 6^n-2*5^n+4^n.
%F A245020 a(n) = 15*a(n-1)-74*a(n-2)+120*a(n-3) for n>3. G.f.: -2*x^2 / ((4*x-1)*(5*x-1)*(6*x-1)). - _Colin Barker_, Sep 18 2014
%F A245020 a(n) = 2*A016103(n). - _Colin Barker_, Sep 18 2014
%e A245020 For n=2 the a(2)=2 solutions are (0,5) and (5,0).
%t A245020 LinearRecurrence[{15,-74,120},{0,2,30},30] (* _Harvey P. Dale_, Nov 20 2020 *)
%o A245020 (PARI) concat(0, Vec(-2*x^2/((4*x-1)*(5*x-1)*(6*x-1)) + O(x^100))) \\ _Colin Barker_, Sep 18 2014
%Y A245020 T(1,n) gives A000918; T(2,n-1) gives A028243, T(n,3) gives A008588, T(n,4) gives A005914.
%Y A245020 Cf. A016103.
%K A245020 nonn,easy
%O A245020 1,2
%A A245020 _Ovidiu Bagdasar_, Sep 17 2014