A245025 Decimal expansion of the moment derivative W_3'(2) associated with the radial probability distribution of a 3-step uniform random walk.
2, 1, 4, 2, 2, 0, 4, 4, 9, 8, 5, 2, 5, 6, 6, 3, 4, 6, 8, 0, 1, 3, 9, 1, 9, 7, 8, 4, 7, 0, 1, 9, 6, 5, 0, 2, 0, 1, 2, 0, 6, 4, 5, 8, 0, 1, 7, 9, 1, 8, 0, 0, 0, 6, 9, 1, 9, 3, 5, 5, 6, 3, 8, 0, 6, 4, 6, 4, 9, 9, 8, 8, 3, 2, 1, 7, 9, 0, 4, 8, 3, 3, 9, 9, 0, 7, 9, 2, 7, 8, 4, 0, 3, 3, 3, 5, 7, 8, 4, 2, 4, 0, 8, 9, 1
Offset: 1
Examples
2.1422044985256634680139197847019650201206458017918000691935563806464998832...
Links
- Jonathan M. Borwein, Armin Straub, James Wan, and Wadim Zudilin, Densities of Short Uniform Random Walks p. 978, Canad. J. Math. 64(2012), 961-990.
- Eric Weisstein's MathWorld, Clausen's Integral
Crossrefs
Cf. A244996.
Programs
-
Mathematica
Clausen2[x_] := Im[PolyLog[2, Exp[x*I]]]; RealDigits[2 + (3/Pi)*Clausen2[Pi/3] - 3*Sqrt[3]/(2*Pi), 10, 105] // First
-
PARI
2 + 3*imag(polylog(2, exp(Pi*I/3)))/Pi - 3*sqrt(3)/2/Pi \\ Charles R Greathouse IV, Aug 27 2014
Formula
W_3'(2) = 2 + (3/Pi)*Cl2(Pi/3) - 3*sqrt(3)/(2*Pi), where Cl2 is the Clausen function.
W_3'(2) = 2 + 3*W_3'(0) - 3*sqrt(3)/(2*Pi).