cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245027 Divisors of 7^12 - 1.

This page as a plain text file.
%I A245027 #19 Sep 08 2022 08:46:08
%S A245027 1,2,3,4,5,6,8,9,10,12,13,15,16,18,19,20,24,25,26,30,32,36,38,39,40,
%T A245027 43,45,48,50,52,57,60,65,72,75,76,78,80,86,90,95,96,100,104,114,117,
%U A245027 120,129,130,144,150,152,156,160,171,172,180,181,190,195,200,208
%N A245027 Divisors of 7^12 - 1.
%C A245027 Number of divisors of k^12-1 for k = 2..20: 24 (2), 80 (3), 96 (4), 240 (5), 128 (6), 864 (7), 512 (8), 384 (9), 256 (10), 1920 (11), 256 (12), 960 (13), 384 (14), 448 (15), 768 (16), 1792 (17), 768 (18), 3840 (19), 384 (20).
%C A245027 The following triangular numbers belong to this sequence: 1, 3, 6, 10, 15, 36, 45, 78, 120, 171, 190, 300, 325, 741, 780, 2080, 2850, 4560, 8385, 14706, 16290, 5915080, 1730160900.
%H A245027 Bruno Berselli, <a href="/A245027/b245027.txt">Table of n, a(n) for n = 1..864</a>
%H A245027 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>
%e A245027 13841287200 = 2^5 * 3^2 * 5^2 * 13 * 19 * 43 * 181.
%t A245027 Divisors[7^12 - 1]
%o A245027 (PARI) divisors(7^12-1)
%o A245027 (Sage) divisors(7^12-1)
%o A245027 (Magma) Divisors(7^12-1);
%o A245027 (Maxima) divisors(7^12-1);
%Y A245027 Cf. Divisors of k^12-1: A003524 (k=2); A003532 (k=4); A003543 (k=8), A027902 (k=9), A027897 (k=10), A245028 (k=11).
%K A245027 nonn,fini,full
%O A245027 1,2
%A A245027 _Bruno Berselli_, Jul 10 2014