This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245045 #11 Mar 13 2015 22:17:49 %S A245045 3,11,17,43,67,113,131,193,241,353,523,641,683,1291,1601,1667,1873, %T A245045 2017,2243,2731,3083,3361,3851,4483,4817,4931,5281,5521,7211,8363, %U A245045 8513,8971,9283,9923,10753,11971,13633,16433,17713,18371,18593,19267,21841,22571 %N A245045 Primes of the form (k^2+2)/6. %H A245045 Chai Wah Wu, <a href="/A245045/b245045.txt">Table of n, a(n) for n = 1..1500</a> %e A245045 When k=4, (k^2+2)/6 = 3 is prime, so 4 is a member of the sequence. since putting k = 0, 1, 2, or 3 does not give a prime, so 4 is the first term. %o A245045 (Python) %o A245045 import sympy %o A245045 [(k**2+2)/6 for k in range(10**6) if sympy.ntheory.isprime((k**2+2)/6) & ((k**2+2)/6).is_integer()] %Y A245045 Cf. A154616, A002327, A066436. First 5 terms equal to A078116. First 4 terms equal to A127996. %K A245045 nonn %O A245045 1,1 %A A245045 _Chai Wah Wu_, Jul 10 2014