cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245048 Primes p such that p^2 + 28 is prime.

This page as a plain text file.
%I A245048 #24 Jul 26 2014 10:29:00
%S A245048 3,5,11,13,17,19,23,41,43,47,53,67,79,83,89,97,109,131,137,149,157,
%T A245048 163,167,179,181,193,211,223,239,241,251,263,277,281,311,317,331,379,
%U A245048 397,401,409,421,431,439,443,449,457,467,479,541,569,599,643,647,673
%N A245048 Primes p such that p^2 + 28 is prime.
%C A245048 7 of the first 8 odd primes are in this list.
%H A245048 Chai Wah Wu, <a href="/A245048/b245048.txt">Table of n, a(n) for n = 1..2000</a>
%e A245048 3 is in the sequence because 3^2 + 28 = 37, which is also prime.
%e A245048 5 is in the sequence because 5^2 + 28 = 53, which is also prime.
%e A245048 7 is not in the sequence because 7^2 + 28 = 77 = 7 * 11.
%p A245048 A245048:=n->`if`(isprime(n) and isprime(n^2+28), n, NULL): seq(A245048(n), n=1..10^3); # _Wesley Ivan Hurt_, Jul 24 2014
%t A245048 Select[Prime[Range[200]], PrimeQ[#^2 + 28] &] (* _Alonso del Arte_, Jul 12 2014 *)
%o A245048 (Python)
%o A245048 import sympy
%o A245048 [sympy.prime(n) for n in range(1,10**6) if sympy.ntheory.isprime(sympy.prime(n)**2+28)]
%Y A245048 Cf. A062324 (p^2+4), A062718(p^2+6), A243367(p^2+10).
%K A245048 nonn
%O A245048 1,1
%A A245048 _Chai Wah Wu_, Jul 10 2014