This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245050 #6 Jul 10 2014 19:15:01 %S A245050 1,2,27,521,11764,290305,7585749,206294771,5778015219,165541098701, %T A245050 4828687088591,142916854642246,4281359716909135,129567073833995237, %U A245050 3955263087052174005,121649279851846182073,3766009580469162813492,117260083892211493754415 %N A245050 Number of hybrid 7-ary trees with n internal nodes. %H A245050 Alois P. Heinz, <a href="/A245050/b245050.txt">Table of n, a(n) for n = 0..300</a> %H A245050 SeoungJi Hong and SeungKyung Park, <a href="http://dx.doi.org/10.4134/BKMS.2014.51.1.229">Hybrid d-ary trees and their generalization</a>, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235 %F A245050 a(n) = 1/(6*n+1) * Sum_{i=0..n} C(6*n+i,i)*C(6*n+i+1,n-i). %F A245050 a(n) = [x^n] ((1+x)/(1-x-x^2))^(6*n+1) / (6*n+1). %F A245050 G.f. satisfies: A(x) = (1+x*A(x)^6) * (1+x*A(x)^7). %p A245050 a:= n-> add(binomial(6*n+i, i)*binomial(6*n+i+1, n-i), i=0..n)/(6*n+1): %p A245050 seq(a(n), n=0..20); %Y A245050 Column k=7 of A245049. %K A245050 nonn %O A245050 0,2 %A A245050 _Alois P. Heinz_, Jul 10 2014