This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245052 #6 Jul 10 2014 19:16:59 %S A245052 1,2,35,885,26264,852909,29347189,1051325430,38798085127, %T A245052 1464834251301,56313293080748,2196846557946047,86747889084025665, %U A245052 3460614563468144968,139261626165295942419,5646457490910228197571,230445856010164690649448,9459481451214159977362615 %N A245052 Number of hybrid 9-ary trees with n internal nodes. %H A245052 Alois P. Heinz, <a href="/A245052/b245052.txt">Table of n, a(n) for n = 0..300</a> %H A245052 SeoungJi Hong and SeungKyung Park, <a href="http://dx.doi.org/10.4134/BKMS.2014.51.1.229">Hybrid d-ary trees and their generalization</a>, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235 %F A245052 a(n) = 1/(8*n+1) * Sum_{i=0..n} C(8*n+i,i)*C(8*n+i+1,n-i). %F A245052 a(n) = [x^n] ((1+x)/(1-x-x^2))^(8*n+1) / (8*n+1). %F A245052 G.f. satisfies: A(x) = (1+x*A(x)^8) * (1+x*A(x)^9). %p A245052 a:= n-> add(binomial(8*n+i, i)*binomial(8*n+i+1, n-i), i=0..n)/(8*n+1): %p A245052 seq(a(n), n=0..20); %Y A245052 Column k=9 of A245049. %K A245052 nonn %O A245052 0,2 %A A245052 _Alois P. Heinz_, Jul 10 2014