cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245055 Decimal expansion of 'tau' (named sigma_2 by C. Pomerance), a constant associated with the expected number of random elements to generate a finite abelian group.

Original entry on oeis.org

1, 7, 4, 2, 6, 5, 2, 3, 1, 1, 0, 3, 3, 5, 1, 5, 4, 3, 5, 2, 4, 8, 9, 0, 4, 8, 0, 6, 9, 4, 1, 2, 9, 8, 6, 4, 1, 1, 5, 4, 4, 3, 7, 9, 8, 9, 8, 3, 8, 1, 0, 4, 6, 2, 8, 1, 4, 2, 9, 0, 4, 7, 9, 5, 7, 4, 6, 5, 5, 5, 0, 3, 8, 7, 0, 0, 8, 1, 3, 5, 0, 8, 6, 8, 0, 5, 8, 1, 4, 7, 4, 1, 7, 5, 2, 4, 7, 8, 8, 1, 2
Offset: 1

Views

Author

Jean-François Alcover, Oct 22 2014

Keywords

Examples

			1.7426523110335154352489048069412986411544379898381...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 273.

Crossrefs

Programs

  • Mathematica
    digits = 101; max = 400; c = 1/Product[N[Zeta[k], digits + 100], {k, 2, max}]; p[j_] := Product[N[Zeta[k], digits + 100], {k, 2, j}]; tau = Sum[1 - (1 - 2^-j)*c*p[j], {j, 1, max}]; RealDigits[tau, 10, digits ] // First
  • PARI
    default(realprecision,120); suminf(j=1, 1-(1-2^(-j))*prodinf(k=j+1, 1/zeta(k))) \\ Vaclav Kotesovec, Oct 22 2014

Formula

tau = sum_{j >= 1} (1-(1-2^(-j))*prod_{k >= j+1} zeta(k)^(-1)).
tau = sum_{j >= 1} (1-(1-2^(-j))*c*prod_{k = 2..j} zeta(k)), where c is A068982.