A245055 Decimal expansion of 'tau' (named sigma_2 by C. Pomerance), a constant associated with the expected number of random elements to generate a finite abelian group.
1, 7, 4, 2, 6, 5, 2, 3, 1, 1, 0, 3, 3, 5, 1, 5, 4, 3, 5, 2, 4, 8, 9, 0, 4, 8, 0, 6, 9, 4, 1, 2, 9, 8, 6, 4, 1, 1, 5, 4, 4, 3, 7, 9, 8, 9, 8, 3, 8, 1, 0, 4, 6, 2, 8, 1, 4, 2, 9, 0, 4, 7, 9, 5, 7, 4, 6, 5, 5, 5, 0, 3, 8, 7, 0, 0, 8, 1, 3, 5, 0, 8, 6, 8, 0, 5, 8, 1, 4, 7, 4, 1, 7, 5, 2, 4, 7, 8, 8, 1, 2
Offset: 1
Examples
1.7426523110335154352489048069412986411544379898381...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 273.
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 33.
- Carl Pomerance, The expected number of random elements to generate a finite abelian group, Periodica Mathematica Hungarica 43 (2001), 191-198.
Programs
-
Mathematica
digits = 101; max = 400; c = 1/Product[N[Zeta[k], digits + 100], {k, 2, max}]; p[j_] := Product[N[Zeta[k], digits + 100], {k, 2, j}]; tau = Sum[1 - (1 - 2^-j)*c*p[j], {j, 1, max}]; RealDigits[tau, 10, digits ] // First
-
PARI
default(realprecision,120); suminf(j=1, 1-(1-2^(-j))*prodinf(k=j+1, 1/zeta(k))) \\ Vaclav Kotesovec, Oct 22 2014
Formula
tau = sum_{j >= 1} (1-(1-2^(-j))*prod_{k >= j+1} zeta(k)^(-1)).
tau = sum_{j >= 1} (1-(1-2^(-j))*c*prod_{k = 2..j} zeta(k)), where c is A068982.